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Abstract

A system is developed to achieve speaker-independent isolated speech recog-

0 nition. The system uses LPC Spectrum, Formants, and Frication Frequency as a

feature set. Dynamic programming is applied for distance calculations. The fun-

damental design concept is to create a universal template for multiple speakers. A

* new algorithm, which combines the vocabularies of several speakers to produce one

optimal template, is incorporated into the system. An advanced speech analysis tool

called SPIRE provides the computational functions required to extract appropriat'

features. Seventy words, from the list of F-16 cockpit commands, are selected as

a vocabulary of the system. The use of a merged template based on three of the

feature sets achieves an accuracy of 99 percent. The system is implemented in list

progamming on Symbolics 3600 series computer.

viii
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F-16 SPEAKER-INDEPENDENT

SPEECH RECOGNITION SYSTEM

USING COCKPIT COMMANDS (70 WORDS)

* I. Introduction

Speech recognition by machine is a topic that has lured and fascinated (ugi-

neers and speech scientists for forty years. For many, the ability to converse freely0
with a machine is the ultimate challenge to our understanding of the productionl

and perception processes invelved in human speech communication (5:26). This

capability is also becoming a necessity. With the recent surge in the use of corn-

* puters for information processing and the corresponding increases in the workload

of human users, there is a growing need to incorporate speech as an added mode of

human/machine communication (15:192).

* During the last decade, a significant advance in speech recognition technol-

ogy has been achieved by the speech researchers in the world. As a result, speech

recognition systems with limited capabilities are now available both commercially

and militarily. These systems are usually able to work with only a small number of

acoustically distinct words spoken by a known speaker, and their performance varies

widely as a function of the particular system, vocabulary, speaker, and operating en-

vironment (7:1404). Also, these systems utilize little or no speech-specific knowledge.

but rely instead primarily on general-purpose pattern-recognition algorithms. Wk:hile

such techniques are adquate for a small class of well-constrained speech recognition

problems, their extendability to speaker-independence, large vocabularies, and/or

• continuous speech is highly questionable. In fact, even for the applications that

1-1



these systems are designed to serve, their performance typically falls far short of

human performance (18:300).

Background

Speech recognition is the technology by which sounds (either words or sen-

tences) uttered by humans are understood by a machine (15:201). This technology

can be applied as a substitute for manual control of switches and keyboards in many

complicated operating environments (11:268).

The principle of speech recognition is explained as follows. Analysis of the

words to be recognized is the first step, and a reference template (dictionary data) is

created from the analysis results. During recognition, words spoken by an individual

* are analyzed and compared with the contents of the reference template by pattern

matching. When a match is made between a spoken word and a word found on the

reference template, that word is considered to be the correctly recognized word (12).

* Speech recognition may be broadly classified according to the metbod used

to create the reference template: either speaker-dependent or speaker-independent

(5:28). In speaker-independent speech recognition, the speech characteristics of many

people are used to create the reference template (or templates) by a method that

offsets the differences among individuals. This method allows the speech recognition

system to be used by more than iust a select group of individuals. There is, however.

an enormous amount of work involved in creating a reliable reference template (13).
S

However, in speaker-dependent speech recognition, the reference template is

created using the vocal sounds made by the actual user of the system. As far as the

user is concerned, althougi; creation of the dictionary is quite troublesome, there are

no restrictions whatever on word selection for recognition. Moreover, this method has

the advantage that the vocabulary of words for recognition can be altered to increase

recognition accuracy. For this reason, speaker-dependent speech recognition units

* are generally superior in terms of recognition accuracy (3).

1-2
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In addition, methods for recognition/analysis of monosyllables and individual

words may be further divided into isolated spoken forms and continuous spoken

forms. The majority of speech recognition systems that are currently in actual use

employ the isolated spoken forms. Since it becomes more difficult to obtain high

recognition accuracy as the number of words is increased, the scale and cost of the

system rise sharply as the number of vocabulary in reference template increases

(2:9-1).

Probhrn Statcryntn

The primary purpose of this thesis is to design and implement a speaker-

independent speech recognition system utilizing F-16 cockpit commands (70 words).

The goal is to produce a system that can do isolated word recognition on a SPIRE

based system. SPIRE stands for Speech and Phonetics Interactive Research En-

vironment. It is a software program that allows an user to interactively examine

and process speech signals. The system will be implemented on the Lisp machine

(Symbolics 3600).

Scopf

The system implemented in this research is designed to recognize speaker-

independent isolated words. The list of vocabulary words used in the system is

shown in figure 4.3. Based on the results of thesis conducted by Dawson (3), only

one feature set (a combination of Linear Predictive Coding, Formants, and Frication

Frequency) is selected to utilize in this study. The dynamic programming algorithm

applied in the system is identical to the One-Stage Dynamic Programming Algorithm

proposed by Ney (11). A new technique, which combines vocabularies of two or more

speakers to produce an optimal reference template, is applied in the final stage of

the research. Throughout the experiment, SPIRE is used as a library of functions

called by the main LISP program for performance of creating the utterance files.

1-3



Assumnptions

In the process of analog-to-digital conversion, there exist some acoustic noises

that are merged with the actual speech waveforms. However, the noises are small

enough to be neglected during the entire speech recognition procedure.

SPIRE is used to cut and normalize the individual waveform out of the digitized

and recorded continuous speech waveforms. The purpose of this is to create the

utterances of each word in the vocabulary. However, in this step, the boundaries

are drawn manually. The establishment of a boundary is consistently accurate to

include only the actual speech components of the waveforms. In other words, neither

noise nor silence has been included as a part of an individual word representation.

Gencral Approach

The general approach for system design and implementation is as follows. First,

0 Dawson's program (3) was used to expand the vocabulary from ten digits to seventy

words. This step involved modifications of the program to accommodate all seventy

words, in comparing and displaying, the reference template and the testing utterance.

With the modified algorithm, a test of speaker-independence was conducted.

Five different speakers were utilized in the test. Due to the limitation of disk space

and computational time, only fifty words (ten words from each of five speakers) were

selected.

Next, an algorithm was designed to use vocabularies of two or more speakers

and produce one reliable reference template. The technique was a one-time calcula-

tion and preprocessing method. And it may be a solution to the speaker-independent

0 speech recognition system.

Finally, the new system was tested with five different speakers (ten words from

each speaker). The test started with the template utilizing the vocabularies of two

* speakers only. And the testing was repeated for three, four, and five speakers.

1-4
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Materials and Equipment

The following materials and equipments were used:

* Digital Sound Corporation (DSC) A/D Converter.

* •* Symbolics 3600 Lisp Machine;

1. One Mega-\Word of RAM.

2. Floating Point Accelerator.

3. Lisp (List Programming).

4. SPIRE (Version 17.5).

* * Noise Reducing Microphone.

e Laser Printer.

0 Sequence of Presentation

Chapter two gives brief summaries of the previous speech recognition research

conducted by AFIT thesis students.

0 Chapter three presents the technical discussion needed to understand the re-

search being conducted in this thesis. In particular, the chapter describes SPIRE as

well as the Symbolics 3600 Series Lisp Machine and List Programing.

* Chapter four describes the major processing functions and design concept of

the system developed in this research. The concept of the new algorithm will be

explained in detail.

* Chapter five discusses testing procedures and results for both the modified

system and the newly developed system.

Chapter six provides conclusions and recommendations, and appendices show

0 program listing and sample results.

1-5
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* IH. Background of the AFIT Speech Recognition System

The development of speech recognition system has been an important area of

research at the Air Force Institute of Technology for several years. In this chapter.

an overview of previous speech recognition efforts is presented. From 1981 to 1987,

research has been conducted to improve the recognition accuracy, increase the size of

vocabulary, and/or develop the speaker-independent continuous speech recognizer.

* In order to familiarize the reader with the concepts and the techniques that have

been applied to these researches, a brief description of individual study is given.

In addition, important concepts and techniques are explained as the addendums to

those descriptions.

Computer Analysis and Recognition of Phoneme Sounds

In 1981, Seelandt investigated the characteristics of phonemes uttered in con-

nected speech (16:1-2). The results, then, were used to obtain a set of prototype

phonemes which could be used in a pattern matching recognition scheme. The pro-

totype phonemes were tested and refined to establish an optimal set of prototypes

0 (16:5). Also, testing and refinement of a recognition routine were accomplished. In

pattern matching, the routine used the results of distance measurement calculation

to choose possible phoneme matches for each time period (16:18-20). The recognition

routine also generated information on how good a choice it made, so the accuracy of

both the recognition method and prototype phonemes could be measured (16:15).

Finally, Seelandt developed an algorithm to apply the optimal set of prototype as a

key feature for the speech recognition (16:7).

Phoneme Analysis Speech recognition method, used in Seelandt's thesis, is

aimed at the creation of an optimal set of prototype phoneme templates. Since the

set of prototypes would be the basis for speech recognition, the development of the

2-1
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prototype phoneme templates was the critical factor in his speech recognition system

(16:17). Therefore, an understanding of phonemes and how they appear in the actual

speech is necessary.

A most extensive study of phonemes was conducted by Potter, Kopp, and

Green in 1947. They defined the description of phonemes that make up English

speech. Their phoneme set consists of 47 phonemes including both voiced and

unvoiced fricative and stop sounds, as well as vowels and dipthongs (16:20-29).

* Dipthongs are the combination sounds. As can be noticed in chapter four of this the-

sis. the fricative sound plays an important role as one of features applied to digitized

speech waveforms of both template and testing utterance.

• Most of the time, the actual phonemes in normal speech are quite variable

because they change as a function of their usage within the word or the sentence. It

takes a finite time to actually vary the shape of the vocal tract and create a different

sound (13:29). Also, the actual sound produced by the vocal tract depends on the

past position of vocal tract. This phoneme-to-phoneme transition causes many of the

problems in the connected speech recognition. Any recognition method which ignores

this transition affect will not produce accurate results (16:18). The spectrographic

• pattern of words, however, may be identified by careful visual inspection (by skilled

analyzers) as long as they occur in intelligible speech (12:23-40).

Based on the above principles of phoneme, Seelandt integrated a system called

* the Speech Sound Analysis Machine (16:37). The system is an interactive software

controlled tool which is capable of displaying speech spectrograms while concurrently

generating the associated speech waveforms. It shows exactly what distinct sounds

are uttered in selected speech segment while allowing an operator to listen that

segment of speech (16: 39- 45).

After performing analyses, Seelandt produced a recognition algorithm based

on the results. The results indicate that a speech utterance can be separated into or

defined by a set of distinguishable sound units (16:92-95). Also, there are transition

2-2
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Table 2.1. Speech Recognition Procedure (16:94)

1. Record and digitize a speech utterance.

2. Run TRYDIST6 to obtain distance measurement
* results between the speech and a set of

templates.

3. Using the data files created in step 2, run
a LISTER routine to manipulate the distance
results in an attempt to recognize the
speech utterance.

4. The output files created by step 3 can be used
to: quickly search for identification and
location of phonemes, scan scale and range
factor data along with the 5 best matches in
an effort to determine template accuracy, and
synthesize speech.

sounds between two distinguishable sound units in both normal and fast speech.

The recognition algorithm is basically a software tool which has been developed and

refined to incorporated the above analysis results (16:98-99). Table 2.1 shows an

example of how this tool may be used.

Isolated Word Recognition Using Fuzzy Set Theory

Following Seelandt's research, Montgomery developed an algorithm to recog-

nize isolated words (10:4). As a solution to high error rate of the acoustic processor,

the research relies on the consistency of phoneme sequences and the errors that typ-

ically occur when a word is given to be recognized (10:3-5). Montgomery generated

error statistics and phoneme representations for each word in the vocabulary using

a set of training speech files. Then he implemented the top five phoneme choices

2-3
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with the information indicating the accuracy of each choice for each time segmenl

of speech. Those choices were provided by the acoustic processor (10:4-7). Mont-

gomery applied the Fuzzy Set Theory to combine the phoneme choices with the error

information obtained from the training file in determining the word spoken (10:25).

* The algorithm produced a word score indicating the plausibility of the word being

spoken regardless of the number of errors or types of errors exist in the acoustic

output. A score is generated for each word in the vocabulary and the word with the

highest score is selected as the spoken word. Montgomery believed that his algo-

rithm could readily be adapted for real time speech recognition (10:45-50). However.

the algorithm should be adjusted, as the number of operations required to make a

decision increases when the larger size of vocabulary is implemented.

Fuzzy Set Theory Since Montgomery utilized the fuzzy set theory in the pro-

cess of deteinining the spoken words, a discussion of the theory is appropriate. The

theory provides a concept for sets of information in which the transition from mem-

bership to non-membership is not clearly defined (10:20-21). For example, a set of

people who are strong is not clearly defined and the transition can not be clearly

established. In order to include this fuzziness, the members of fuzzy set are assigned

a grade of membership which is some value between zero and one (10:21). A fuzzy

set, S, would then be of the form:

S = {x1 /u(x,), X2 /U(X2 ),.-, zi/u(Xi),..., X,/u(X,)} (2.1)

where x, is an element of set S with a grade of membership of u(xi) in the set.

Continuing the example of the set consisting of strong people, one possible fuzzy set

* may be

S(strong) = {10/1.0, 25/0.9, 35/0.8, 50/0.5, 75/0.01} (2.2)

where the strengths, or elements, of the set are 10, 25, 35, 50, and 75 and their

* respective grades of membership are 1.0, 0.9, 0.8, 0.5, and 0.01.

2-4
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The grades of membership can be assigned either subjectively, as in those

* shown above, or may be assigned by using a mathematical equation (10:21). An

example of an intuitive equation that could be used to determine the grades of

membership of the elements in the set of strong people is shown below.

u(xi) = I For xi _ 25, (2.3)

) (1 + ((x, - 25)/5)2) - l For x, > 25

where u(x,) is the grade of membership of the element x, in the set S(strong).

Algebraic Properties Fuzzy set theory is not an informal mathematical tool.

Since the introduction of this theory, numerous papers have been written in attempts

to provide a more formal theory. Some of the formal algebraic properties that have

been suggested include (10:21-23):

Equality: Two fuzzy sets. A and B, are equal if, and only if, Uta(X) = Ub(X)

for all x, where x is an element of the set of all el aents.

Containment: A fuzzy set A is contained in, or is a subset of a fuzzy set B,

written A < B if, and only if, uo(x) < Ub(x) for all x.

Complementation: A' is the complement of the fuzzy set A if, and only if,

u'(x) = 1 - ua(x), for all x.

Intersection: Intersection of the fuzzy sets A and B, denoted by A n B, is

given by Uafnb(x) = Min (u0 (x), Ub(x)) for all x and is defined as the largest fuzzy

set contained in both A and B.

Union: Union of the fuzzy sets A and B, denoted AUB, is given by UUb(X) =

Max (ua(x), ub(x)) for all x and is defined as the smallest fuzzy set containing both

SA and B.

Although formalization is generally useful, strict adherence to the formal theory

that some have proposed may significantly diminish its advantages and possible

* applications (10:24-28). For instance, the operators "Min" and "Max" are used

2-5



extensively for the sake of formality. Although these operators are definitely of

* value, the choice of an operator is always a matter of context, and mainly depends

upon the real world situation. In other words, all mathematical properties, regarding

the class of fuzzy set theoretic operators, should be interpreted at an intuitive level

(10:23). Therefore, any operator which appears reasonable, such as the Average

or Product operators defined below, should also be considered when developing an

algorithm employing fuzzy set theory (10:23).

Average: The average of two fuzzy sets A and B, to produce fuzzy set C, is

given by u,(X) = (u0 (X) + ub(X))/2 for all x.

Product: The product of two fuzzy sets A and B, to produce fuzzy set C, is

given by u1(X) = u(X) .Ub(X) for all x.

Limited Continuous Speech Recognition by Phoneme Analysis

In 1983, Hussain developed a limited continuous speech recognition system

* based on phoneme anlysis (6:1-3). Sixteen bandpass filters were used to obtain the

frequency components of input speech. The input speech was broken into packets

of forty milliseconds width. The packets then were compared with phonemes in the

* template file by differencing the frequency magnitudes (6:4). Finally, the resulted

phoneme .tring representation of the input speech was compressed and compared

with strings in the library file for discrete word recognition. For continuous speech

recognition, the phoneme string was analyzed, one phoneme at a time, to construct

word sequences (6:5). The word string which best matched the input phoneme string

was recognized as the word sequence. The system achieved an accuracy of ninety-

four percent for discrete word recognition and eighty percent for continuous speech

recognition (6:6-8). The vocabulary used was ten digits (zero through nine) and a

point.

2-6
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Approaches and Techniques The outline of Hussain's phoneme based speech

recognition is as follows. The first step is to divide the input speech into a sequence of

sounds. Each unit of the sound sequence is compared with a reference set of unique

sounds. The unique sounds are the phonemes in the library. Then, a sequence

• of phonemes can be established which represents the original input speech (6:4).

This string is called Phoneme Representation of Input Speech. Finally, the string

is processed for constructing the word or words spoken. The construction process

includes compression of the string and comparison of the string with the phonemes

in the template or dictionary file (6:5).

In order to achieve successful construction, Hussain needed to set a reliable

processing environment. The processing environment is a critical area in any speech

recognition process. Hussain puts a heavy emphasis on his processing environment

for the purpose of producing more accurate speech recognition system (6:40-41).

The following paragraphs briefly describe the environment utilized in development

* of Hussan's system.

Automatic Gain Control (AGC) circuit is incorporated in the environment

for several reasons. After preamplification, the input speech is screened with a

* preemphasis filter. The filter has a gain of 6 dB/octave above 500 Hz. Then, the

input speech passes through the AGC circuit, which has 60 dB dynamic range. Three

resons for using AGC circuit can be identified. First, the spectrum analyzer requires

* a certain minimum input level for proper operation. The next reason is that the

energy threshhold applied depends on the AGC circuit. Thirdly, the AGC reduces

jittering affects of the input speech.

For an analysis of the input speech, Hussain used a bank of bandpass filters (six-

teen of them) instead of applying Fast Fourier Transform (FFT). Sixteen bandpass

filter outputs of the input speech were produced by utilizing the ASA-16 spectrum

analyzer chip in the hardware (6:8). There are two advantages of using bandpass fil-

ters. First one is that the filters eliminate the inherent "noise" produced when FFT

2-7



analvsis is used for preprocessing. Secondly, the sampling may be accomplished at

a lower rate (6:40). A typical sampling rate for FFT is 8 KHz. However, it is only

400 Hz for bandpass filter approach.

Using an analog-to-digital speech digitizer, the outputs of the above filters are

digitized at sampling frequency of 400 Hz. This gives each of sixteen filter outputs a

sampling rate of 25 Hz (6:43). Next the outputs pass through a lowpass filter which

has cutoff frequency of 25 Hz. The cutoff frequency is selected to be 25 Hz because

* the energy variation bandwidth of human speech does not exceed 25 Hz. Therefore.

the output of the low pass filter would have same time length as one packet of the

input speech which is forty milliseconds (6:46-52).

* Initially, Hussain used two packets of the input speech for the phoneme repre-

sentation. However, he realized that single output of sixteen channels was sufficient

to represent a phoneme sound (6:6). Hence the individual phoneme sound was forty

milliseconds long which consisted of sixteen dimensional vectors. These vectors are

the outputs of sixteen band pass filters (6:55).

In addition. to eliminate the background noise and the direct current offset

errors, twenty millivolts of the threshhold level is subtracted from the input signal

(6:65). The phonemes or sixteen dimensional vectors are also individually normalized

to unit energy. The enegy normalization is needed for the phoneme recognition and

comparison routine (6:49-50). The sequence of energy normalized vectors represent

* the input speech.

After normalization, the vectors of input speech are compressed for two rea-

sons. Notice the input speech is in the form of phoneme sequence. The sequence

* of phonemes is compressed to prevent the variations which inevitably occur when a

word is spoken several times (6:52). Also, it is compressed to overcome the "noise"

created due to natural variations in the speed of speech (6:53). This compressed

* phoneme representation of the input speech is now ready for comparison.
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Finally, Htussain created a set of unique phonemes for the reference template

and compared them with each vector of the compressed input speech (6:55). In the

process of comparison, the distance differences were calculated between the vectors

of input speech and the reference template. For the calculation, he initially used an

* approach of difference raised to power of two. However, the approach of difference

raised to power of four resulted in better accuracy (6:6-7).

* Implementation of A Real-Time, Interactive, Continuous Speech Recognition System

In 1984, Dixon (4) designed and implemented a speech recognition system

to recognize continuous speech in a real time environment (after training). She

incorporated several techniques in characterizing phonemes as vectors in space. The

words were characterized by phoneine representations which subsequently were used

in word recognition (4:5-6). The distance rules were utilized in converting the words

to phoneme representation. Dixon believes that her approach to speech recognition

0 offers several possibilities for future investigation such as varying the Minkowski

distance computation rule and applying clustering technique (4:8-10). Her algorithm

is modularized on a hierarchical basis and is user friendly. Modularity provides an

* easy modification to system components. User friendly means that the algorithm

can be easily used by someone who may not be a computer expert (4:35-40). Dixon

basically combined several techniques, developed earlier at AFIT, with additional

modifications to produce a viable speech recognition system (4:4-5). The techniques

used are explained in the following paragraphs.

Phoneme Representation One of the techniques Dixon used is phoneme rep-

* resentation. Seelandt produced a set of seventy phonemes by combining several

time slices or vectors of digitized speech. And Hussain developed single-vector

sixteen-dimensional phonemes (4:4). However, the method for phoneme generation

in Dixon's system compares and averages the sixteen-dimensional vectors to produce

a set of less than seventy phonemes. The comparison and averaging continue until

2-9
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* Table 2.2. Minkowski Distances (4:21)

Minkowski 1 D, = r_ 1f -

Minkowski 2 D 2 = [ _M('Xm - x,,.) 2  2

Minkowski N DN [ ;Ti(X,m - X,)NI/N

where N = Minkowski Distance

M = Vector Length

i = Vector Element

0 m = Vector m

n = Vector n

* the phoneme set is established (4:19).

Distance Rules Another technique Dixon applied is an adaptable distance rule.

Many pattern recognition algorithm incorporates metrics based upon the Minkowski

distance. Table 2.2 shows some of different ways. However, Dixon experimented

with several Minkowski exponents and usually used Minkowski 4 in her algorithm

because it emphasized the effect of any large discrepancies between compared vectors

* (4:20).
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Spatial Comparison In order to investigate any possible clustering affects,

* Dixon performed some spatial comparisons. Since some vectors in the n-dimension

decision space lie closer together than others, these vectors can be used to define re-

gions of space or clusters (4:28-30). Dixon's algorithm redefines the nearest vectors

• by averaging and weighting (4:22). Therefore, each vector has an initial weight of

one and those vectors, which are closest to one another by Minkwoski distance, are

averaged together by the equation,

X N = (X * weight(m)) + (X * wcight(n))/weight(m) + wcight(n) (2.4)

The highest numbered vector is deleted and a new weight is assigned to the new

vector by

Swght(m) = weight(m) + weight(n) (2.5)

The resulted set of vectors represents clusters of similar sounds.

Spcaker-lndcprndcnt Word Rcogni/ion Us¢ing Multiple features, Decision Mecha-

nisms, and Templatf Scls

In 1986, Brusuelas developed a speaker-independent word recognition system

* (1:2-4). The system incorporates multiple decision mechanisms, features, and tem-

plate sets to recognize whole word, isolated speech inputs. The category of features

utilize] in the multiple feature sets includes Linear Predictive Coding (LPC) coeffi-

cients, LPC gain term, time, zero crossing rate, wide-band spectrogram, and formant

tracks (1:5-8). He derived a total of fifty-five processed features from the above cate-

gory. The computation for raw extraction is provided by an advanced speech analysis

tool called Speech and Phonetics Interactive Research Environment (SPIRE). The

results of experiment indicate that the system can successfully recognize whole word

inputs from a range of independent speakers (1:17-20). Brusuelas conducted the ex-

periment with limited vocabulary inputs and predefined template set. The system is

* designed in List Programming (LISP) on Symbolics 3600 series computer (1:22-24).
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Fcatur Cat gorics Brusuelas' feature selection is based on two factors. First,

he found that the spectrogram is an aid to reading other features. In other words,

when other features are aligned with the spectrogram, they can be read more clearly

than when they are not aligned (1:22-23). Therefore, he decided to include the spec-

trogram as one of the feature set. The second factor involves development efficiency.

He wanted to choose the features that could be readily imllemented with current

technology (1:18). Furthermore, only features provided by SPIRE were to be coi-

sidered. As a result, Brusuelas selected six feature categories, shown in figure 2.1.

The descriptions of the features are presented in the following paragraphs.

(1) Wide-Band Spectrogram. As shown in figure 2.1, the vertical

striation in the spectrogram is indicative of the pitch period. Voicing is depicted

by dark horizontal bands (formants). The spectrogram is computed with Fourier

transform using the Hamming filter which has window width of 3.3 ms (1:8).

(2) Zero Crossing Rate. This feature counts the number of times the

waveform passes the region centered around zero.

(3) LPC Gain Term and

(4) LPC Coefficients. LPC is an useful feature because it produces

extremelv accurate estimates of the speech parameters. Also, its relative speed of

computation is high (1:23). The gain term describes the modulation pattern of the

waveform energy while the coefficients describe the modulation patterns of particular

frequency bands (1:24).

(5) Formants. Formant patterns are one of the primary visual references

used in reading spectrograms.

(6) Time. Time is the only feature category that is not provided by SPIRE.

A relative measure of time is performed by extracting the length of an array which

stores the digitized utterance (1:24).
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Processed Features The results of all feature computations are one or two

dimensional arrays except for time. For example, the zero crossing rate is a one

dimensional array where the length of the vector corresponds to time length of the

utterance (1:29). Also, the formants computation is a two dimensional array where

0 the second dimension corresponds to time length and the first corresponds to a

discrete formant frequency component. The following paragraphs describe the pro-

cessing techniques which Brusuelas utilized to efficiently run the recognition process

* (1:29-32).

(1) Time Compression. Features are linearly time compressed to a

length of twenty. Twenty is an arbitrary length. Brusuelas wanted to compress

• the data without severely distorting the dynamic characteristics of the feature sets

(1:30). Time compression is needed because it saves subsequent computation time

and storage requirements; it also smoothes the data. In addition, since dynamic

time warp is not applied, the compression is needed to compensate for unequal

length of utterances (1:31). In the process of time compression, twenty windows are

overlaid on the input data along the time dimension. The windows are adjacent,

non-overlapping, and equal length for any given input (1:32). Data in the windows

* are averaged to produce the time compressed values. The resulting vector or array

is always a length of twenty since twenty windows are used (1:30-31).

(2) Normalization. The input arrays of features are normalized by

* dividing the individual array elements by the total array energy (1:30). There are

three different ways to normalize the array. The array can be normalized in its

entirety, by rows only, or by columns (1:31).

* (3) Median Filter. Median filter is utilized in the system to bridge

formant discontinuities because formant tracking is sometimes erratic (1:31). The

filter changes the value of a datum point to the median value of any particular

window. The filter is also applied to the LPC coefficients and wide-band spectrum

to investigate its effectiveness on other features (1:36).
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(4) Frequency Compression. In order to reduce the computational

requirements during matching and smoothing the data, linear frequency compression

is necessary for the wide-band spectrogram feature (1:32). The spectrogram arrays

are 250 by 20 where 250 is the number of frequency components and 20 is the number

* of compressed time slices (1:41). However, after the compression, the resulting array

is 16 by 20.

SPIRE Based Continuous Speech Reconition System

In 1987, Dawson developed a SPIRE based continuous speech recognition sys-

tem (3:1-8). The system incorporates multiple features and dynamic programming

to recognize continuous inputs of spoken digits (zero through nine). The features

used in his research effort arc wide band spectrogram, narrow band spectrogram.

LPC spectrum, frication frequency, and formant tracks (3:1-4). SPIRE is utilized to

perform the computational functions needed to extract the raw features. The system

* is implemented in LISP on a Symbolics 3600 series LISP machine (3:2- 10).

Dynamic Time Warping A technique which nonlinearly time aligns the speech

patterns is called dynamic time warping. Dawson used the technique in his system to

compensate the nonlinear time variations common in speech. However, the algorithm

of dynamic time warping was originally presented by Vintsyuk and later modified

by Herman Ney (11:263-265).

Distance Arrays The distance arrays are two dimensional arrays, M by

N, where Af is proportional to the length of the template and N is proportional to

the length of the test pattern (3:3-7). M and N are represented by the sequences

of vectors. Each vector of these arrays represents the features of both the template

and the utterance extracted at each moment m and n respectively. The value of

subscripts (m, n) in the distance array then represents the vector distance between

* the template at moment m and the utterance at moment n (3:3-9). In the speech
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recognition process, distance arrays are considered as the key technique for match-

ing. For isolated speech, a measure of matching is taken by tracing the path from

point (0, 0) to point (Al, N) of the distance array which results in the minimum

accumulated distance of all the possible points in that path (3:3-10).

* An example of distance array using a hypothetical feature set is shown in table

2.3a. At any particular moment, the speech is represented by a three dimensional

vector indicating the energy in each of the three frequency bands. In order to recog-

* nize an isolated word, the distance array between the test word and each word in the

template would be calculated and the word with a minimum accumulated distance

will be chosen (3:3-9). The distance rule used here is Minkowski 1. However. to

find a minimum path through the connected speech distance array, an accumulated

distance array has to be formulated as shown in table 2.3b. In this array, the vector

value of each point represents an accumulated distance which is the sum of the local

distance of that point and the minimum of the accumulated distance of all possible

* preceding points (3:3-7). Notice that certain constraints govern the route of the

traced path. In other words, the path must continue forward in time for both tem-

plate and the test pattern. Therefore, the path can not go left or down and points

* may not be skipped or omitted (3:3-9).

One-Stage Algorithm for Connected Speech Dawson applied Ney's (11)

algorithm called One-Stage Algoithm for Connected Speech to the main program of

* his thesis. Figure 2.2 shows how a composite distance array of grid points (i,j, k)

is computed. Notice individual time slices of test pattern are referenced by index j

and time slices of each word k in template are referenced by index i. A minimum

* accumulated distance D(i,j, k) is defined for each grid point (i,j, k) in order to find

the minimum path through the array (3:3-9). Each point D(i,j, k) is the minimum

sum of local distances d(i,j, k) along some path to grid point (i,j, k). For any grid

point (i,j,k), D(i,j,k) is found by selecting the predecessor with the minimum

accumulated distance and adding that accumulated distance to the local distance
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* Table 2.3. Distance Arrays (3:3-8)

(0,2,5) 1 13 7 1

Template (0,2,5) 1 13 7 1

Pattern (0.,0,0) 8 10 2 8

* (Six) (5,4,0) 11 1 9 13

(0,2,5) 1 13 7 1

(0,2,5) 1 13 7 1

* (0,3,5) (5,5,0) (1,0,1) (0,2,6)

Test Pattern (Six)

2.3a Hypothetical Distance Array

(0,2,5) 25 37 19 7

* Template (0,2,5) 24 26 12 6

Pattern (2,0,0) 23 13 5 13

(Six) (5,4,0) 13 3 12 25

(0,2,5) 2 14 21 22

(0,2,5) 1 14 21 22

(0,3,5) (5,5,0) (0,0,1) (0,2,6)

Test Pattern (Six)

2.3b Hypothetical Accumulated Distance Array
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d(ij, k). The transition rules consist of within-template rules and between-template

0 rules (3:3-10). Thus for the template interior, j > 1, the recursion rule is,

D(ij, k) = d(i,j, k) + min[D(i - 1,j, k), D(i - l,j - 1, k), D(i,j - 1, k)] (2.6)

* At template boundary with j = 1, the recursion rule is,

D(i,j, k) = d(ij, k) + min[D(i - 1, J(k'), k)] (2.7)

where k = 1,...., K. By keeping track of where the path crosses template bound-

aries, the problem of boundary detection in the test pattern is handled automatically

(3:3-11). A flow chart for the One-Stage Dynamic Time Warping Algorithm for con-

nected speech is shown in figure 2.3.

Time Distortion Penalties Dawson's algorithm applies time distortion

penalties using slope dependent weights. For three directions, horizontal, diago-

nal, and vertical, the local distance is multiplied by the weights (1 + a), 1, and b

respectively, prior to evaluating the dynamic programming recursion (3:3-10):

D(i,j,k) = min[(1 + a). d(i,j,k) + D(i - 1,j,k),

d(i,j, k) + D(i - I ,j,k), b . d(i,j - 1, k) + (z,j - 1, k)] (2.8)

Summary of Steps The summary of Dawon's dynamic time warp algo-

* rithm is shown in figure 2.4. Notice that the unknown sequence is recovered in step

3 above by tracing back the decision taken by the minimum operator at each grid

point (3:3-11).
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j nine 0 k=10

J(9) 1

j eight k=9

J(8) 
1

j seven k=8

J(7) 1

j six k=7

J (6) 1

Template j five 
k=6

Set J(5) 1k=

j four *k

J(4) 
1

j three .0w k=4

J(3) 1

j two k=3

J (2) 1

0 D

3(1) zero k=l

1-

I

four three one nine

i N

Test Pattern

Figure 2.2. Hypothetical Distance Array for Continuous Speech (3:3-12)

2-19

0



Initialize arrays of accumulated and backpointers.

LOOP OVER TIME FRAMES OF THE INPUT PATTERN.

LOOP OVER TEMPLATES.
i

Evaluiate dynamic programming recursion according
to betweentemplate rules.

• Update the column array of accumulated distances.

- Update the column array of backpointers.I
LOOP OVER TIME FRAMES OF THE TEMPLATES.

* Evaluate dynamic programming rexursion according

to within-template rules.

- Update the column array of accumulated distances.

- Update the column array of backpointers.

• L'OOP CNTROL I

LOOP CONTRO

Keep track of the template with minimum accumulated distance
at its ending frame in a "From Template" array

Keep track of bachpointers at the ending frame of the
corresponding template in a from frame array.

• LOOP CONTROL

Recover the sequence of templates:

- Start from the template with the minimum accumulated
distance at its ending frame.

• - Backtrack the sequence of templates using the "From Frame"
and "From Template" arrays up to the beginning frame of
the input pattern.

Figure 2.3. Schematic Diagram (3:3-16)
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Step 1. Initialize D(1, k) d(1,n,k).

Step 2. (a) For i = 2, ..., N, do steps 2b-2e.

(b) For k = 1,...,K, do steps 2c-2e.

(c) D(i, 1, k) = d(i, 1, k) + min[D(i - 1,j(k*), k*)].

(d) For j = 2, ..., J(k), do step 2e.

(e) D(i,j, k) = min[(1 + a) * d(i,j, k) + D(i - 1,j, k),

d(i,j,k) + D(i - 1,j - k),

b*d(i,j- 1,k)+ D(i,j - 1, k)I.

Step 3. Trace back the path from the grid point at

a template ending frame with the

minimum total distance using array

D(i, j, k) of accumulated distances.

Figure 2.4. Dynamic Time Warp Algorithm (3:3-11)
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III. Processing Environment

This chapter introduces the software and hardware components utilized to

• develop he speech recognition system. First, List Programming (Lisp) is briefly

explained. Next, SPIRE is described in a detail. Then, the last section presents the

hardware configuration as well as other optional equipments.

Lisp

Lisp is a high level programming which takes its name from List Programming.

It is one of the oldest active programming languages and widely used in the field of

artificial intelligence (14). Lisp is an extremly powerful language for handling large

amounts of data common in artificial applications. In fact, special purpose computers

called Lisp Machines are designed at the circuit level to run only Lisp. Together,

* these provide a powerful computing environment with a large virtual address space.

Therefore, Lisp is very popular for speech and signal processing applications (19:5).

There are many dialects of Lisp. One dialect called COMMON Lisp is becom-

* ming a standard. Most Lisp machines available today have Common Lisp as a

standard language. However, a different dialect called Zeta Lisp is used in this

thesis.

SPIRE

SPIRE stands for Speech and Phonetics Interactive Research Environment.

SPIRE is available by license through the MIT patent office. It is a software program

which allows the user to interactively examine and process speech signals.

It is designed to support the need of simple computer users as well as skilled

programmers (17:1). In the process of development, the Speech Research Group at

MIT made provisions to be easily customized and modified by the users. Also, its
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user interface is simple, and it can be easily learned by a beginner. However. the

real power of SPIRE comes from its capability to display the information necessary

for speech analysis and speech recognition (8:4-5).

Furthermore, its graphical display capability provides a unique feature to users.

A speech signal can be displayed in a variety of different ways. Figure 3.1 shows a

list of different ways that SPIRE can process the signal and display on the screen.

The signal can also be resized, rescaled, recomputed, repositioned, and overlaved

* (17:2-10). The figure 3.2 demonstrates a small sample of these capabilities for the

utterance, "AIR-TO-SURFACE MISSILE."

The top display of the figure shows the orthographic transcription of the ut-

* terance. Below that is the original waveform. This waveform is the shape of the

particular speech which does not contain any data from the features available in

the SPIRE package (1:7). The next display is an overlaid one (Narrow-Band Spec-

trogram and Formants) which makes it easier to track similarities among various

representations of the data. The last two displays demonstrate a unique capabilty of

SPIRE, an ability to synchronize displays. Notice that there is a cursor located at

0.9467 seconds of the Wide-Band Spectrogram as well as the original waveform and

* Narrow-Band Spectrogram. The last display reflects the Wide-Band Spectral Slice

at that cursor position. The corresponding Narrow-Band Spectral Slice may also be

displayed (1:8).

Interfacing SPIRE from Lisp For each SPIRE display, computations are re-

quired to obtain the necessary data. And the process of computations is available

through Lisp as simple function calls. The primary functions used to make SPIRE

* perform computations on an utterance are shown in figure 3.3. However, the three

functions of the table can be combined into a single Lisp expression as shown below

(1:13).

(SETQ
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Energy, Total
Energy, 0 to 5000 Hz
Energy, 120 to 440 Hz

Energy, 3400 to 5000 Hz

* Energy, 640 to 2800 Hz

Formants, All Four
Formant, First
Formant, Second
Formant, Third

* Formant, Fourth
Frication Frequency

LPC Center of Gravity
LPC Gain Term
LPC Predictor Coefficients

* LPC Spectrum Slice
Narrow-Band Spectrogram

Narrow-Band Spectral Slice
Narrow-Band Spectrum Slice

Original Waveform
* Orthographic Transcription

Phonetic Transcription

Pitch Frequency
Waveform Envelope
Wide-Band Spectrogram
Wide-Band Spectral Slice
Wide-Band Spectrum Slice

Zero Crossing Rate

Figure 3.1. List of SPIRE Displays (1:12)
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RESULT-ARRAY

(SPIRE:ATT-VAL (SEND (SPIRE:UTTERANCE PATHNAME)

:FIND-ATT ATT-NAME)))

where RESULT-ARRAY is the variable containing the result of the computa-

tion and ATT-NAME is the features selected to be used such as LPC spectrum or

frication frequency. PATHNAME is the location of a particular utterance. After all

the necessary computations, the utterance may be killed or unloaded as follows:

(SEND (SPIRE:UTTERANCE PATHNAME) :KILL)

SPIRE returns the results of computation in a form of array and the dimension

of the array depends on the type of features used. Table 3.1 shows the list of array

types returned for various features of SPIRE function calls.

Hardu'arc

Hardware components used in this research are Lisp Machine, Array Processor,

and Speech Digitizer. These features are described in the following subsections.

Lisp Aachine Symbolics 3600 Series Lisp Machine is used to accommodate the

language (LISP) and the software package (SPIRE). The Symbolics Lisp Machine is a

powerful computer specifically designed to efficiently run Lisp code. The programs of

SPIRE package are written in Lisp. Also, the machine has an efficient user interface

and extensive graphical capabilities (1:13-15). The Floating Point Accelerator (FPA)

is included in the machine to speed up floating point operations by about a factor

of three. The FPA is an add-on card which is critical to the applications of speech

recognition where heavy computations are generally required.

Array Processor The array processor utilized here is the FPA which is compat-

ible with the SPIRE package. This processor is a special purpose device designed to
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SPIRE:UTTERANCE

Parameters: pathname (required)
Type: function

Returns: utterance-flavor
0 Description: The utterance in the file "pathname" becomes the current

utterance in SPIRE. If needed the utterance is loaded
into memory from disk. This function must be called
before any computation can take place.

• :FIND-ATT

Parameters: att-name (required)
Type: message to utterance flavor

Returns: att
Description: att-name is a string that identifies what attribute the

0 user desires SPIRE to compute. For example, assume we
are to compute the Wide-Band Spectrum of an utterance
stored in the file ":>PKIM>UTTS>ARM>UTT".
First, select the utterance:

(SETQ TEMP1
* (SPIRE:UTTERANCE ":>PKIM>UTTS>ARM>UTT" ))

TEMP1 stores the utterance flavor for the next step:

(SETQ TEMP2

(SEND TEMP1: FIND-ATT "WIDE-BAND SPECTRUM"))

0 TEMP2 now holds the att from which the actual values
may be extracted (see next function).

SPIRE:ATT-VAL

Parameters: att (required)
Type: function

Returns: array (results of computation)
Description: This function returns the computed value of the att we

are interested in. For example, if TEMP2 holds the
att (as discussed above), extract the values:

0 (SETQ TEMP3 (SPIRE:ATT-VAL TEMP2))

TEMP3 now holds the "Wide-Band Spectrum" values.
Similiar procedures are followed for obtaining the values
of any of the standard SPIRE computations.

Figure 3.3. SPIRE Interface Functions (1:14)
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Table 3.1. SPIRE Result Arrays (3:2-10)

Attribute Name Result Array

Wide-Band Spectrum 2-D, 256 X N

Narrow-Band Spectrum 2-D, 256 X N

LPC Spectrum 2-D, 256 X N

* LPC Coefficients 2-D, 19 X N

Formants (four) 2-D, 5 X N

LPC Gain Term 1-D, N

LPC Center of Gravity 1-D, N

* Zero Crossing Rate 1-D, N

Frication Frequency 1-D, N

Total Energy l-D, N

N = time * analysis rate
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* Table 3.2. Computational Time Comparison (1:15)

* Configuration Ratio Example

FPS Array Processor 10 1.0 minute

* Floating Point Accelerator 3 3.0 minutes

Bare Lisp Machine 1 10.0 minutes

quickly handle computations on large arrays of data files. The FPA is connected to

the Symbolics Lisp Machine through a UNIBUS interface. This array processor sig-

nificantly saves the computational time required for certain SPIRE functions (1:15).

An approximate comparison of a bare Symbolics Lisp Machine, one with FPA, and

one with FPS array processor is shown in table 3.2.

Speech Digitizer For the process of converting raw speech waveforms into the

binary data, an analog-to-digital converter is needed. In this study, Digital Sound

Corporation (DSC) A/D converter is utilized. The DSC is connected to the Sym-

bolics Lisp Machine via UNIBUS interface. The digitized data of speech waveforms

may be either directly sent to Lisp Machine or prerecorded for transfering (3:2-1 1).
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IV. System Design

This chapter presents the major processing functions and design concept of the

*- system developed in the research. First, it will provide details on how the templates

and utterances are processed before dynamic time warp is performed to calculate

the distances between each template word and testing utterance word. Next, a brief

* description of dynamic time warp is presented. Then, the algorithm of creating

merged template will be explained. Finally, the vocabulary used in this study is

given.

Uttcrance Processing

Processing of an utterance requires specific computations executed by SPIRE

on the original digitized waveform, and any additional processing called by the pro-

0 gramming. Several Lisp functions are available for this study depending on the

desired arrays of data (See Appendix A). The methods of feature extraction and

other processings are discussed below.

Feature Extraction As discussed in chapter three, feature extraction requires

some calling functions of SPIRE. In order to perform the necessary computations

and obtain the desired arrays of data, the filename of an utterance and the name

of features should be inputted. The process is accomplished by calling COMPUTE-

ATT (See Appendix A).

In Dawson's thesis, several features or feature sets were applied and the com-

* bination of LPC Spectrum, Formants, and Frication Frequency resulted in the best

accuracy of speech recognition. For the purpose of concentrating this research on

creating an optimal template set, only the feature set above was utilized in process-

* ing the utterances throughout the research. The optimal template set is a reference
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dictionary which is reliable for multiple speakers. The above three features are de-

scribed individually in the following paragraphs.

LPC Spectrum In order to obtain LPC spectrum, the original waveform

i •is preemphasized and run through a 256 point Fast Fourier Transform (FFT) rou-

tine incorporating a Hamming window. The calculation is achieved using a filter

bandwidth of 300.0 Hz and the LPC coefficients. The results are returned in 256

discrete frequency components representing from 0 to 8000 Hz in log-magnitude form.

Therefore, processed utterance will be two dimensional arrays, 256 X N, where N is

proportional to the time length of the utterance. However, to reduce computational

time, LPC Spectrum is compressed to 16. Figure 4.1 shows an example of LPC

Spectrum Slice as well as Formants and Frication Frequency.

Formants Formant values are computed from the LPC Spectrum. The

peaks are found by fitting a polynomial to each LPC Spectral Slice. Then, the poly-

nomial is differentiated and solved for zeros. SPIRE returns the result of Formants

as a two dimensional array, 5 X N, where N is proportional to the length of an utter-

ance. Rows zero through four of this array represent the five formant frequency sets.

However, row zero is not used because of inconsistency of the data. An additional

feature, Frication Frequency, is utilized in the research since the formants lose track

during the fricative sounds.

Frication Frequency It is a fair indicator of whether a fricative or vowel

sound is occurring. Throughout each utterance, it attempts to determine the fre-

quency of fricative sounds. During non-fricative sounds, the frequency is below 500

Hz, and during fricative sounds, the frequency is above 1000 Hz. These frequency

values are approximated numbers based on the series of testing. In order to keep

track of these fricative sounds during the recognition process, the algorithm multi-

* plies a local distance by 0.4 whenever the frequency of that local position is greater
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than 1500 Hz.

Other Processings Additional processings were necessary to perform speech

recognition process more efficiently. Clipping, Median Filtering, Frequency Corn-

* pression, and Energy Normalization are utilized in the thesis. These processings will

reduce computing time, eliminate unnecessary data, and prevent side effects. They

are discussed below.

0 Clipping Purpose of the processing is to ignore the last five time slices of

all the results returned by the SPIRE functions. Due to the predictive nature of the

LPC coefficients calulations, the last five time slices can not be computed and these

* are returned by SPIRE as zero values. Therefore, any feature associated with the

LPC coefficients also has zero values in the last five time slices. Formants calculation

is one of these examples. The values of LPC coefficients are used to calculate the

formant frequencies. In order to set the uniformity during the recognition process,

the last five time slices of any utterance are ignored no matter which features have

been applied on the utterance.

* Median Filtering This processing excludes unnecessary spikes in the for-

mant trackings. As mentioned in Formant section, the Formants lose track during

fricative sounds. Therefore, the processing was necessary for an efficient recogni-

tion of speech signals. For more detail, refer to Lisp function MEDIAN-FILTER in

Appendix A.

Frequency Compression It is performed to reduce computational time,

* emphasize resolution in the lower frequencies, and de-emphasize resolution of the

higher frequencies. The results of LPC Spectrum are compressed from 256 discrete

frequncy components down to 16. The lower 132 frequency components (0 to 4,125

* Hz) are linearly compressed to 12 components and the upper 124 components (4,125

to 8,000 Hz) are linearly compressed to 4 components. However, the process is
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achieved by averaging instead of addition since the original speech waveforms are

preemphasized by SPIRE. Refer to Lisp function FREQUENCY-COMPRESS-LFE

of Appendix A for more detail.

* Energy Normalization For the purpose of solving energy disparity prob-

lem, each time slice of LPC Spectrum is energy normalized. With this problem, the

system is unable to recognize the utterances properly. See ENERGY-NORMALIZE

in Appendix B for more information.

Dynaamic Time Warping

As discussed in Dawson's thesis (3), dynamic time warping is a method by

which speech patterns are nonlinearly time aligned. This time alignment is neces-

sary due to the nonlinear time variations common in speech. In this research, the

same dynamic time warping is utilized for calculations of the distances between each

* template word and the testing utterance word. However, the algorithm is modified

so that it can search all seventy words and display them in five separate screens.

Also, a different weight scheme is used for three directions (horizontal, vertical, and

diagonal) of the path.

Merged Template

The fundamental goal in speaker-independent speech recognition system is

that of creating a reference dictionary or reference template which can be reliably

used with many different speakers. Several techniques have been tested to achieve

this goal by many engineers, but none of them were successful enough to solve all

* the problems associated with speech recognition process. The technique of merging

template applied in this thesis is a one-time preprocessing method. The diagram of

this technique is displayed in figure 4.2. And the description of how this technique

* applies to the algorithm that creates an optimal template is discussed in the following

paragraphs.
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1 2 3 4 5 6 7 8 9 ... n

Speaker 1 1 t i

Speaker 2 T 2

Speaker 3 T3

Speaker m Tm ..... IT

1 2 3 4 5 .n

LPC N X16

Formants NX 5

FricationN
Frequency

Where T, = Time length of a word spoken by Speaker I

T2 = Time length of a word spoken by Speaker 2

T3 = Time length of a word spoken by Speaker 3

* N = Time length of an averaged word of m speakers

n = Number of time slices of a particular word

* Figure 4.2. Template Merging
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Reference Utterance First step of this technique is to select a reference utter-

ance. The program obtains the first words from the vocabularies of specified number

of speakers and calculates the average time length of these utterances. Then it scans

the utterances and selects the one that is closest to this averaged time length. The

process is repeated for each of the seventy words in the vocabulary. The selected

utterance will be the reference utterance for the rest of steps required to create an

optimal template. For the case of figure 4.2, the selected utterance would be the

* word spoken by speaker two.

Detcrmining Ncarest Index The next step is to determine the nearest index

at each time slice. However, to better understand the technique applied here, the

description of a processed utterance is appropriate. When an utterance is processed

with the three features (LPC Spectrum, Formants, and Frication Frequency), the

resulted data contains three sets of arrays (16 X N, 5 X N, and N) where N is

* proportional to time length of the utterance. Notice 16 X N is the result of LPC

Spectrum, 5 X N is the result of Formants, and N is the result of Frication Frequency.

The program takes LPC Spectrum array of the reference utterance and scans

* through every time slice in time length, N. At each time slice, it looks at LPC

Spectrum arrays of the other utterances and determines the center point for those

utterances which corresponds to this particular time slice. This step is necessary

because every utterance has a different time length even though the words spoken

are same. The equation for this center point, C is shown below.

C=i.(TfT,) ; Fori=l ton (4.1)

where n = Numbe'of time slices of the reference utterance.

i = Particular time slice of the reference utterance.

Tm = Time length of word spoken by speaker m.

* Tr = Time length of reference utterance.
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* Notice the center point is at sixth time slice for speaker one and at fourth time

slice for speaker three in figure 4.2. Next, the program reads a specified radius to

determine the radius of other utterances which gives the bandwith of time slices to

be looked at. The specified radius is a variable input controlled by the user. The

radius of other utterances is evaluated using equation shown below.

R=r'(TITr) ; Fort> 1 (4.2)

0 where r = Specified radius.

R = Radius of other utterances to be looked at for anv"

particular time slice of the reference utterance.

0 For each time slice of the reference utterance, a number of time slices in other

utterances is selected to be scanned. The number of time slices in other utterances

is determined using the equation below.

0 K = 2R + 1 (4.3)

where A = Number of time slices of other utterances under scanning region.

All the time slices in the scanning region are analyzed and only one time slice

from each utterance is selected which is the closest to that particular time slice of

the reference utterance. Now only one set of data from each time slice is obtained

by the computer.

Averaging Time Slice For each time slice of the reference template, a number

of data from the corresponding time slices will be available. The number depends

upon the number of speakers used in this process. For example, if the vocabularies of

five speakers are used, five sets of data for each time slice of the reference utterance

will be available. The final step is to average these data. The data are added and

divided by the number of speakers used. The averged data for each time slice are

stored in the newly created LPC array. The above process will be repeated for the

arrays of Formants and Frication Frequency.
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0

0

1. Advise 25. Five 48. Profile

• 2. Affirmative 26. Flares 49. Radar

3. Aft 27. Forward 50. Range

4. Air-to-Air 28. Four 51. Report

5. Air-to-Surface 29. Foxtrot 52. Rhaw

6. Alpha 30. Frequency 53. Search

7. Arm 31. Fuel 54. Select

8. Backspace 32. Gun 55. Seven

• 9. Bearing 33. Heading 56. Six

10. Bravo 34. Hundred 57. SMS

11. Cancel 35. Knots 58. South

12. Chaff 36. Lock-On 59. Station

0 13. Change 37. Map 60. Strafe

14. Charlie 38. Mark 61. Tail

15. Channel 39. Miles 62. Target

16. Clear 40. Minus 63. Thousand

17. Confirm 41. Missile 64. Threat

18. Degrees 42. Negative 65. Three

19. Delta 43. Nine 66. Two

* 20. East 44. North 67. Waypoint

21. Echo 45. Nose 68. Weapon

22. Eight 46. One 69. West

23. Enter 47. Radar 70. Zero
0 24. Fault

0 Figure 4.3. F-16 Cockpit Commands
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Optimal tenplate Merged utterance consists of a set of three arrays, one for

each feature that has been used. As shown in figure 4.2, the LPC array will be two

dimensional, N X 16, where N is the proportional to the time length of the merged

utterance and 16 is the compressed data which came from 256 discrete frequencies.

* The Formants array will also be two dimensional, N X 5, where N is again propor-

tional to the time length of the merged utterance and 5 is the number of formant

frequency. However, SPIRE uses only four formant frequency components because of

* the inconsistency of data. The Frication Frequency will be one dimensional, N, where

N is proportional to the time length. Finally, the optimal template is established by

clustering seventy merged utterances.

Vocabulary

The vocabulary used in this research is shown ', 5igure 4.3. Instead of using tell

digits, actual commands of AFTI F-16 are incorporated. These seventy werds best

0 represent the vocabulary necessary for military environment. As will be discussed

in chapter five, there are some similiar words in the vocabulary that the system has

trouble recognizing.
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V. Testing and Results

This chapter presents an overall description of testing procedure and the results

* of each testing phase. The result of each phase is followed by an analysis. Testing

of this research consisted of three phases. The first phase was accomplished by

using Dawson's dynamic time warp algorithm. However, the program was modified

to accommodate the vocabulary (70 words) and display waveforms on five separate

screens. The second phase was performed to reduce scanning time and to eliminate

any confusion between isolated words and connected words. The final phase was

conducted to test the optimal template which is designed for accurate recognition of

* words spoken by multiple speakers.

Singl Template with Connected Scan

The primary goal of the first phase was to apply all seventy words on Dawson's

dynamic time warp algorithm instead of ten digits (zero through nine). To achieve

the goal, a modification of the algorithm was necessary to accommodate the vocab-

ulary and display speech waveforms properly. The waveforms of the vocabulary plus

testing utterance produce too much information to be displayed on one screen. On

a single screen, the data would be tightly compressed and might be hard to analyze.

Therefore, the program was modified to display the data on five separate screens.

However, the content of the data remained unchanged. Connected Scan refers to the

scheme, which is established in Dawson's algorithm, to inform Process of Searching

for Match that the testing utterance has connected digits.

The reference template was created using the vocabulary of one person (Matt).

Matt is one of five speakers whose utterances were digitized to conduct this research.

The names of five speakers are Matt, Gary, Dave, Kris, and Debbie. The vocabulary

list is shown in Figure 4.3. Notice the size of vocabulary is significantly increased

from Dawson's ten digits. Large amount of disk space and computational time was
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* Table 5.i. Selected Utterances

AFT FLARES AIR-TO-AIR

ARM HUNDRED BACKSPACE

* CHAFF NEGATIVE THOUSAND

DELTA

required to create data files. Therefore, only fifty words (ten words from each of five

speakers) were arbitraily selected for testing purpose. The list of selected words is

shown in table 5.1.

The results of this phase showed sixty percent accuracy which means that only

thirty out of fifty words were correctly recognized. However, ten of thirty words

are those used to create the reference template. When the template words and

the testing words are spoken by the same speaker, the system is called Speaker-

Dependent. Therefore, in order to measure the Speaker-Independence of the system

* properly, those ten words spoken by Matt should be excluded from the list of testing

utterance (fifty words). In other words, only forty words should be considered for

the measurement of Speaker- Independence. Then, the actual results indicate only

* fifty percent accuracy since twenty words out of fourty testing words were correctly

recognized. The result is shown in table 5.2.

The scheme of connected scan is not appropriate in the case of template with

large vocabulary. The results showed that the program was confused whether the

testing utterance was isolated or connected. The problem was especially serious
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Table 5.2. Single-Template Results (Connected Scan)

Speaker Number of Correct Recognition Percent

Debbie (Female) 4/10 40

Kris (Female) 2/10 20

Dave (Male) 8/10 80

Gary (Male) 6/10 60

* Matt (Male) 10/10 100

TOTAL 30/50 60

5-3
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for vocabulary sets which have words with different time lengths. For example,

Debbie's "DELTA" was recognized as "AFT-AFT" and Gary's "AIR-TO-AIR" was

recognized as "BEARING-ENTER". As a solution, a new function was designed

and implemented for the next phase of testing.

Single Template with Isolated Scan

In order to solve the problem observed in phase one, the program called lsolatcd

* Scan was written. The program reduced scanning time to approximately thirty

percent of the connected scan. It directed the computer to assume that the testing

utterance is a single word, avoid the unnecessary steps, and search for the word with

minimum distance.

However, the program had a tendency to select the shortest template word

when the testing utterance was long and was unable to find a good match. To elim-

inate this tendency, a weight scheme was established. The weight scheme depended

on time lengths of individual word. The calculated distance between the template

word and the testing word was multiplicd by L,,/L, where L, is the time length of

testing utterance and Lt is the time length of template word.

Once more, the vocabulary of one speaker (Matt) was used in creating the

reference template. The selected fifty words of phase one were tested. The testing

results indicated sixty-eight percent accuracy. However, for proper measurement of

* Speaker-Independent system, ten words from Matt should be excluded. Then, the

actual accuracy is only sixty percent. The resulting data are displayed in table 5.3.

Throughout the phase of testing, significant time reduction and complete elim-

• ination of confusion problem were observed. However, a bug in the SPIRE system

was discovered. The function, which calculates the frequency of fricative sounds, was

not operating properly. As discussed in chapter three, the feature of frication fre-

* quency obtains an one-dimensional array, N, where N is proportional to time length

of utterance. But the SPIRE system returned the array that was not proportional
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Table 5.3. Single-Template Results (Isolated Scan)

Speaker Number of Correct Recognition Percent

Debbie (Female) 8/10 80

Kris (Female) 3/10 30

Dave (Male) 5/10 50

Gary (Male) 8/10 80

* Matt (Male) 10/10 100

TOTAL 34/50 68

to the time length of the utterance. Instead, it was always constant length of array._0
An effort to correct this system error was initiated. After correcting the error, the

test was rerun and the results are presented in table 5.4.

* Merged Template

Last phase of testing was accomplished by utilizing newly designed algorithm

called Merged Template. The purpose of the algorithm is to create an optimal tem-

* plate set which would be reliable for recognition of words spoken by multiple speak-

ers. The algorithm combines the vocabularies of two or more speakers and produces

one template. The merged template requires less disk space than any single-speaker

* template. In fact, the size of template file decreases as more speakers are used
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Table 5.4. Single-Template Results (*Isolated Scan*)

Speaker Number of Correct Recognition Percent

Debbie (Female) 9/10 90

Kris (Female) 5/10 50

Dave (Male) 5/10 50

Gary (Male) 8/10 80

Matt (Male) 10/10 100

TOTAL 37/50 74

* After Correcting FF and Modification
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* Table 5.5. Merged-Template Results (Two Speakers)

* Speaker Number of Correct Recognition Percent

Debbie (Female) 10/10 100

Kris (Female) 10/10 100

Dave (Male) 10/10 100

Gary (Male) 5/10 50

Matt (Male) 10/10 100

* TOTAL 45/50 90

* when creating merged templates. Also, creating a merged template is a one-time

calculation and preprocessing method. Once the template is produced, the rest of

recognition process is the same as phase one.

A series of testing was conducted using merged templates which were created

by combining different numbers of speakers. First, the merged template of one male

and one female, was tested with fifty selected words of phase one. Then the process

was repeated for three speakers (two males and one female), four speakers (two males

and two females), and five speakers (three males and two females). The results are

shown in tables 5.4 through 5.7.

As can be seen from the results, the merged template of two-speakers has

ninety percent accuracy, the merged template of three-speakers obtains ninety-four
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Table 5.6. Merged-Template Results (Three Speakers)

Speaker Number of Correct Recognition Percent

Debbie (Female) 9/10 90

Kris (Female) 8/10 80

Dave (Male) 10/10 100

Gary (Male) 10/10 100

Matt (Male) 10/10 100

TOTAL 47/50 94
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Table 5.7. Merged-Template Results (Four Speakers)

Speaker Number of Correct Recognition Percent

Debbie (Female) 10/10 100

Kris (Female) 10/10 100

Dave (Male) 10/10 100

Gary (Male) 10/10 100

Matt (Male) 10/10 100

TOTAL 50/50 100

5-9



Table 5.8. Merged-Template Results (Five Speakers)

Speaker Number of Correct Recognition Percent

Debbie (Female) 8/10 80

Kris (Female) 10/10 100

Dave (Male) 10/10 100

Gary (Male) 10/10 100

Matt (Male) 10/10 100

TOTAL 48/50 96
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percent, the merged template of four-speakers achieves one hundred percent, and

the merged template of five-speakers gains ninety-six percent accuracy. The reason

for better accuracy with the merged template of four-speakers instead of the merged

template of five-speakers is uncertain. It seems that the recognition accuracy of the

* merged template increases as the number of speakers combined are increased. How-

ever, after it reaches a certain number of speakers, the recognition accuracy decreases

as the number of speakers combined are increased. In other words, to produce the

• best merged template, the optimal number of speakers should be determined before

the vocabularies of the speakers are combined. The results of all the merged tem-

plates show the recognition accuracy above ninety percent. Based on these results,

a conclusion may be drawn that the technique of merged template can be one of

solutions to Speaker-Indepen dent system. However, before any conclusion, it would

be appropriate to have additional words tested.

SAdditional Utterances In order to confirm the efficiency of merged template

and determine the optimal number of speakers in creating the best template set, fifty

additional words (ten from each of five speakers) were arbitraily selected. However,

only two best template sets (four-speakers and five-speakers) were tested at this

time. The list of ten additional utterances is shown in table 5.8. And the results of

testing are shown in table 5.9 and 5.10.

Once more, the merged template of four-speakers resulted in better accuracy

over the merged template of five-speakers. It had ninety-eight percent for four-

speakers and ninety-six percent for five-speakers. Therefore, a conclusion may be

drawn that the technique of merged template may be one of solutions to Speaker-

* Independent speech recognition system. Also, the optimal number of speakers which

is to be combined in producing the best merged template is four. However, this

number will probably vary as the vocabulary or processing environment is changed.
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Table 5.9. Addtional Selected Utterances

* EAST CLEAR AFFIRMATIVE

FUEL PROFILE FREQUENCY

* MAP REPORT WAYPOINT

TAIL

Table 5.10. Additional Merged-Template Results (Four Speakers)

Speaker Number of Correct Recognition Percent

Debbie (Female) 9/10 90

Kris (Female) 10/10 100

* Dave (Male) 10/10 100

Gary (Male) 10/10 100

Matt (Male) 10/10 100

TOTAL 49/50 98
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Table 5.11. Additional Merged-Template Results (Five Speakers)

Speaker Number of Correct Recognition Percent

Debbie (Female) 8/10 80

Kris (Female) 10/10 100

Dave (Male) 10/10 100

Gary (Male) 10/10 100

Matt (Male) 10/10 100

TOTAL 48/50 96
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* VI. Conclusions and Recommendations

This chapter states conclusions drawn based on the system's performance and

provides recommendations for future research in the area of Speaker-Indepcndcnt

* Continuous-Spfcch Recognition. First, for conclusion of the research, important con-

cepts, significant results, and notable constraints are briefly discussed. Then a variety

of suggestions is presented for some sub-areas of the speech recognition process.

Conclusions

The concept of Aerged Template is a simple potential solution to the Speaker-

Independent Speech Recognition System. The processes of determining an average

utterance, selecting a reference template which is closest to the average, using the

reference template to find best time slices, and producing the optimal template., are

not overly complicated. In fact, the technique used in the research is a well known

method of pattern recognition. However, it is not certain the feature set utilized

here is the best one. Other combinations of features may produce more reliable

templates.

• The results of the first phase indicate that Dawson's dynamic time warp al-

gorithm works well for speaker-dependence but not for speaker-independence. Only

fifty percent of selected words were correctly recognized. Furthermore, it was shown

* that the single-speaker template would not be reliable for multiple speakers because

of the intrinsic characteristics of speech waveforms and individual pronounciation

differences. Therefore, it is necessary to implement an optimal (universal) template

to solve the above problems. The optimal template developed here is not a universal

solution to the Speaker-Independent System. But it certainly would be a contribu-

tion to the development of perfect speech recognition system. Notice all the optimal

templates resulted in the accuracies above ninety percent. In the case of merged

template with four-speakers, the accuracy is almost one hundred percent.
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This study focused on only isolated words because of computational time and

disk space constraints. The system, however, is confused when the operating pro-

gram does not specify whether the testing utterance is isolated or connected. This

confusion would be a great contributor to the failure of any speech recognition sys-

tem. But the modification of algorithm in phase two completely eliminates the

confusion. In addition, the problem of the tendency to select the shortest template

word is serious. In Dawson's research, the problem could not be realized because the

vocabulary consisted of only ten digits (zero through nine). There is no significant

difference in time lengths of ten digits. However, when the words like "AFT" and
"AIR-TO-AIR" are used to create the template, Dawson's algorithm has trouble dis-

tingushing the time length difference between two words. For example, the testing

utterance, "AIR-TO-AIR" would be recognized as "AFT" because the accumulated

distance between the template word "AFT" and the testing utterance "AIR-TO-

AIR" results to be the minimum. This happens whenever the testing utterance is

long and is unable to find a perfect match from the vocabulary list of the reference

template. The problem, however, is completely eliminated by the weight scheme

established in the phase two of the research.

Recommendations

The research was conducted in an ideal environment with four processings and

only three feature sets. Also, only isolated speech, with a limited size of vocabulary,

was applied. However, there still are many areas that need to be explored for a real-

time implementation of speech recognition system. Suggestions for future research

in some of these areas are presented in the following paragraphs.

Realistic Environment The speech recognition system of this research was

tested in a laboratory environment where the background noise level was that of

a computer laboratory. It will be more realistic to test the system in conditions of

low noise, cockpit noise, and background conversations and then compare the per-

6-2



S

formance results of these different environments. The Amstrong Aerospace Medical

Research Laboratory (AAMRL) at Wright-Patterson AFB has sufficient facilities for

simulating various environmental conditions.

* Vocabulary Expansion The performance of the system should be investigated

with a larger size vocabulary. Seventy words are not adequate to test a general

real-time implementation. A more realistic size of vocabulary would be two hundred

words or more. Itowevcr, a vocabulary of two hundred words would significantly

increase computational time and require larger memory size. There are two ways

to reduce the computational time. The first is to acquire an array processor which

reduces the processing time to thirty percent of current time. And the other is

to implement an algorithm called Approximating and Eliminating Searrh Algorithm

(AESA). In the experiment conducted by Vidal (17), AESA saved ninety-four percent

of computational time for a vocabulary which consisted of two hundred words. With

* a reasonable amount of work, the algorithm can be implemented on Symbolics 3600

Lisp machine using SPIRE and Lisp. Also, in order to accommodate the larger size

of data files as the number of vocabulary is increased, a dedicated hardware with

sufficient disk space is necessary.

Connected Speech Only isolated words were tested with the speech recognition

system. However, in the real world, the system which is reliable for both speaker-

* independence and connected-speech, is desired. Follow-on research is recommended

to investigate both areas. The data files of connected speech would require a large

amount of disk space. Also, the process of connected speech will significantly increase

the computational time. As suggested in the previous subsection, one needs to have

an array processor and apply AESA to the system in order to successfully develop

the recognizer.
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Clustered Template Dawson obtained successful results with the clustered tem-

plate (redundant template) in his thesis. He also concluded that the redundant

template is efficient in handling different pronunciations of many speakers. Unfortu-

nately, the redundant template pays a high price in terms of computational time and

memory size. The suggestion given in two previous subsections would be the solu-

tion to these constraints, a dedicated hardware and application of AESA. With the

dedicated hardware and application of AESA, the vocabularies of multiple speakers

* may be clustered to produce an universal reference template. This template then

would contain several differently pronounced words for comparison of any testing

utterance.

Different Sounds The system accurately discriminates among the differences

in vowel sounds or vowel and fricative sounds. However, it is not certain whether it

can discriminate between similar fricative sounds. For example, the system may have

* trouble distinguishing the words, "can" and "tan." Therefore, it is recommended to

include more similar words in the vocabulary for future research of speech recogni-

tion.

Additional Features This thesis uses only one feature set (a combination of

LPC Spectrum, Formants, and Frication Frequency). Other features such as Wide-

Band and Narrow-Band Spectrums should be applied to the system. The merged

* template produces good results with the feature set used here. However, it is possi-

ble that the merged template with other features might produce better recognition

accuracy.
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;;; FILE SYSTEM:

This is an organizational chart of the file
system that has been created in order to run the

• ; speech recognition process more efficiently.

SPL:>PKIM>

S;;; --- TEMPLATES>

;;I--- speakername>
;;;I I ,;39

;; *.utt < ---- Digitized Vocabulary Words
* ;; I 3,,

;;I--- *.bin < ---- Ready-Templates

;--- UTTERANCES>
;;;I 339

* ;;;--- speakername>
399; I I 999

;;I *.utt <---- Digitized Vocabulary Words
999; I 939

;;;I--- speakername-r>
0 ;;9; I I ;,,

;;;*.bin <---- Ready Utterances

; --- DTW>
999; I 399

S;;; I--- speakername-r>
I ;I ;99

;;*.bin < ---- Composite Dtw Files

;--- THESIS>
* I; I 9,9

I;I--- *.lisp < ---- Program Files
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Digitized Vocabulary Word: This is the individually
digitized word that makes up the vocabulary (70 words).
This is simply digitized version of the original ;;;

speech waveform.

Ready Template: The file is the processed result of
the Digitized Vocabulary Word above. Features used are
LPC Spectrum, Formants, and Frication Frequency. The
result of this process will consists 70 sets of data,

;;; (array 16 X N, array 5 X N, array N), where N is
proportional to the time length of individual word.
It basically is a reference template (dictionary data)

;;; and stored on the Lisp Machine for speech recognition.

S;; Ready Utterance: This data is same as Ready Template.
However, the individual words are processed separately

,;; in order to create a single testing word. Each Ready

Utterance will therefore consists only one set of data,
(array 16 X N, array 5 X N, array N), instead of 70 of

* ;;; them for the case of Ready Template.

Composite Dtw File: This is the file created by doing
dynamic time warp on Ready Template and Ready Utterance 3,,

for purpose of distance scannning in finding matched word. ;;;

* ;;; CONVERT-WAVE-TO-UTT:

It takes an input file containing digitized speech
;;; waveform and creates an utterance file. Infile is the

;;; pathname for the file on the host machine. Uttfile is
* ;;; the pathname for the utterance file to be created.

* Rate is the sampling frequency (16K).

(defun convert-wave-to-utt (infile &optional
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(uttfile "tmp.utt")

(rate 16000.))
(declare (special current-utt))
(with-open-file (stream infile :direction :input :characters nil

:byte-size 16.)
(let* ((length (send stream :length))

• (wave-with-header (make-fix-array length))
(wave (make-fix-array (- length 256.)

:displaced-to wave-with-header
:displaced-index-offset 256.)))

(declare (sys:array-register wave))
* (dotimes (i length)

(setf (aref wave-with-header i)
(sign-extend-16 (swap-bytes (or (send stream :tyi)

o)))))
(setf current-utt (spire:create-utterance-from-waveform

• wave rate))

(spire:dump-utterance current-utt uttfile)

current-utt)))

LOAD-WAVE-INTO-RECORDING-BUFFER:

It takes an input file containing digitized speech
waveform and loads the data into SPIRE's Recording Buffer. ;;;

* ;;; This function is included to give the user access to the

speech editing facilities provided by the Recording
Layout in SPIRE.

(defun load-wave-into-recording-buffer (infile)
(with-open-file (stream infile :direction :input :characters nil

:byte-size 16.)

• (let* ((file-length (send stream :length))
(length (min (- file-length 256) spire:*recording-

buffer-size*))

(dotimes (i 256) (send stream :tyi))
* (dotimes (i length)
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* (setf (aref spire:recording-buffer-array i)
(sign-extend-16 (swap-bytes (or (send stream

:tyi) 0)))))

(setf (array-leader spire:recording-buffer-array 0)

* (1-length))

(send (send recording-buffer-utterance :find-cursor

: marker-time)
:set-values 0.0)

(send (send recording-buffer-utterance :find-cursor
: cursor-time)

:set-values 0.0)

• (let ((wv-attr (send recording-buffer-utterance
:fine-attribute "Original Waveform")))

(send wv-attr :update-monitors)))))

(defun swap-bytes (x)

* (multiple-value-bind (hi lo)
(floor x 256)

(+ (ish lo 8) hi)))

J:::::::::::::::::::::::::::::::::::::353::53395 ::399::395::::js :::

VOCABULARY:

This is the list of words utilized in the vocabulary.

(defvar *vocabulary*

'("Advise" "Affirmative" "Aft" "Air-to-Air" "Air-to-Surface"
* "Alpha" "Arm" "Backspace" "Bearing" "Bravo" "Cancel"

"Chaff" "Change" "Charlie" "Channel" "Clear" "Confirm"
"Degrees" "Delta" "East" "Echo" "Eight" "Enter" "Fault"
"Five" "Flares" "Forward" "Four" "Foxtrot" "Frequency"
"Fuel" "Gun" "Heading" "Hundred" "Knots" "Lock-On" "Map"

* "Mark" "Miles" "Minus" "Missile" "Negative" "Nine" "North"
"Nose" "One" "Point" "Profile" "Radar" "Range" "Report"
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"Rhaw" "Search" "Select" "Seven" "Six" "SMS" "South"
• "Station" "Strafe" "tail" "Target" "Thousand" "Threat"

"Three" "Two" "Waypoint" "Weapon" "West" "Zero"))

(defvar *vo-list*

S(1101" ''02' ''03' ''04" ''05' "06" "07' ''08" 1'09' ''10'
''11 111211 ''13' ''14" "15' ''16" "171' ''18" "19' 1120"

1121" 1@2211 12311 112411 11251 12611 "27" 112811 112911 ''30'
131" "3211 113391 1134" 113511 "36" 11"37" ''38" 113911 l140"

1141" "'42" ''43'' "44" 1145" ''46'' "47" "48'' 1149" 1150"
1 511  15211 115311 15 411 "5511 1156" 11571 1158" 115911 1"6011

1610 ''62'' 116311 "6411 16511 116611 116711 "68' "6911 117011))

0 ; ;; LOAD: ;;

This function loads all of the thesis files necessary
to perform speech recognition processes. ; ,

(load "spl :>pkim>thesis>globals")
(load "spl :>pkim>thesis>utilities")

(load "spl :>pkim>thesis>vord-search !")
* (load "spl:>pkim>thesis>dtw")

(load "spl :>pkim>thesis>isolated-scan")

(load "spl :>pkim>thesis>myfile")
(load "spl :>pkim>thesis>ltemp")
(load "spl : >pkim>thesis>merge-templates-kab-style")

;, ; WORD-SEARCH!:

This function presents a menu of the processes that ;;;
are required to create the composite dtw file and search
for minimum distance to choose the best matched word out

the vocabulary (Seventy F-16 Cockpit Commands).
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* (defun word-search! )
(let* ((item-list '("Create Ready-Template File"

"Load Ready-Template File"

"Create Ready-Utterance File"

"Load Ready-Utterance File"
* "Create Composite DTW File"

"Load Composite DTW File"
"Apply Connected Word Search"
"Apply Isolated Word Search"
"QUIT"))

* (menu (tv:make-window 'tv:momentary-menu
':label "Word-Search!

Select one of the following..."))

(choice))

(send menu ':set-item-list item-list)
* (setq choice (send menu ':choose))

(cond ((equal choice "Create Ready-Template File")
(create-ready-template-file))

((equal choice "Load Ready-Template File")
* (load-ready-template-file))

((equal choice "Create Ready-Utterance File")

(create-ready-utterance-file))

((equal choice "Load Ready-Utterance File")
(load-ready-utterance-file))

• ((equal choice "Create Composite DTW File")

(create-composite-dtw-file))

((equal choice "Load Composite DTW File")

(load-composite-dtw-file))

((equal choice "Apply Connected Word Search")

* (scan-dtw *cdtw*)

(word-search!))
((equal choice "Apply Isolated Word Search")

(scan-dtw-isolated *cdtw*)

(word-search!))

0 ((equal choice "QUIT")))
"You have exited Word-Search!"))

* ;;; CREATE-READY-TEMPLATE-FILE:
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This function creates a Ready-Template file. It is
* ;;; accomplished by reading each word of the vocabulary one

by one. Requested SPIRE computations are performed on

individual word and the data is saved into a disk file.
;;; The user is prompted for both input and output pathnames. ;;;

S;Input : Typing the name of speaker.
Output: Writes Ready-Template File to Disk.

* (defun create-ready-template-file )
(let* ((read-directory (string-append

"spl:>pkim>templates>"

(prompt-and-read :string

"Please enter speaker
* name: ") ">"))

(read-path)
(write-path (string-append

"spl:>pkim>templates>"

(prompt-and-read :string

* "Please enter Ready-Template

name: "M

(choice nil))
(setq *t-set* nil)
(setq *tempath* read-directory)

* (setq choice (menu-feature-set))
(loop for v-word in *vocabulary* do

(setq read-path (string-append read-directory
v-word ".utt"))

(terpri)
* (princ "Processing ")

(princ read-path)

(princ "...")

(setq *t-set* (append *t-set*
(list

* (cond ((equal choice
"Wide Band Spectrum")
(process-utterance-wbs

read-path))
((equal choice

* "Narrow Band Spectrum")
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(process-utterance-nbs
read-path))

((equal choice
"LPC Spectrum")
(process-utterance-lpc

((equal choice "Formants") 
read-path))

(process-utterance-formants
read-path))

((equal choice
"LPC, Formants, Fr. Freq.")
(process-utterance-lpc-

formants-ff read-path)))))))

(send (spire:utterance read-path) :kill))
(dump-to-disk write-path (list *t-set* *tempath*)))

(word-search!))

;; CREATE-READY-UTTERANCE-FILE:

This function creats a Ready-Utterance file. It is
;;; accomplished by reading a particular word and computing
;;; requested features on that word. The data is saved into
;;; a disk file. The user is prompted for both input and
;;; output pathnames.

Input : Typing speakername and a desired word.
Output: Writes a Ready-Utterance File to Disk.

(defun create-ready-utterance-file 0
(let* ((read-path

(string-append
"spl:>pkim>utterances>"

(prompt-and-read :string
"Name of Digitized Continuous Utterance :")
.utt"))

(write-path

(string-append
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"spl :>pkim>utterances>"

(prompt-and-read :string
"Name of Ready-Utterance "M

(choice nil))
(setq choice (menu-feature-set))

(setq *ready-utterance*
(cond ((equal choice "Wide Band Spectrum")

(process-utterance-vbs read-path))
((equal choice "Narrow Band Spectrum")

(process-utterance-nbs read-path))
((equal choice "LPC Spectrum")

(process-utterance-lpc read-path))
((equal choice "Formants")
(process-utterance-formants read-path))

((equal choice "LPC, Formants, Fr. Freq.")

(process-utterance-lpc-formants-ff read-path))))

0 (setq *uttpath* read-path)

(send (spire:utterance read-path) :kill)
(dump-to-disk write-path (list *ready-utterance* *weight-list*

(word-search!)) 
*uttpath*)))

; ;;: LOAD-READY-TEMPLATE-FILE:

This function loads a Ready-Template file.

Input : Typing filename of a Ready-Template.

;;;, Output : Writes data of the Ready-Template on the buffer. ;;;

(defun load-ready-template-file 0
(let* ((read-path (string-append

1"spl : >pkim>templates>"

(prompt-and-read :string

"Name of Ready-Template :

(load read-path)
(setq *t-set* (car *data*))
(setq *tempath* (cadr *data*)))
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(word-search!))

LOAD-READY-UTTERANCE-FILE:

S;This function loads a Ready-Utterance file.

Input : Typing filename of a Ready-Utterance file.

Output : Writes dat of the Ready-Utterance on the buffer. ;;;

(defun load-ready-utterance-file (

(let* ((read-path (string-append
"spl:>pkim>utterances>"

* (prompt-and-read :string

"Name of Ready-Utterance : "))))
(load read-path)

(setq *ready-utterance* (car *data*))

(setq *weight-list* (cadr *data*))

* (setq *uttpath* (caddr *data*)))

(word-search!))

* ;;; MENU-FEATURE-SET:

It provides a menu of features to be processed.

(defun menu-feature-set ()
(let* ((item-list '("Wide Band Spectrum"

"Narrow Band Spectrum"

"LPC Spectrum"
• "Formants"

"LPC, Formants, Fr. Freq."))
(menu (tv:make-window 'tv:momentary-menu

':label "Word-Search

Select Feature Set to Use..."))

* (choice))

(send menu ':set-item-list item-list)
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(setq choice (send menu ':choose))
choice))

;:; PROCESS-UTTERANCE-LPC-FORMANTS-FF:

It processes an utterance using features of LPC

;;; Spectrum, Formants, and Frication frequency and produces
;;; output data necessary for Ready-Template and Ready-Utt.

(defun process-utterance-lpc-formants-ff (pathname)
'let ((returned-list nil))

(setq returned-list (list (row-normalize-array

(frequency-compress-lfe
(compute-att pathname

"LPC Spectrum")))))
(setq returned-list (append returned-list (list (regionize

(median-filter
(compute-att

pathname
"Formants"))))))

(setq returned-list (append returned-list (list

(make-array-from-fps-structure

(compute-att
pathname
"Frication Frequency")))))

(setq *weight-list* '(4.5 2))

returned-list))

(defun make-array-from-fps-structure (array)

(let ((return-array (make-array (array-dimensions array))))
(dotimes (i (car (array-dimensions array)))

(setf (aref return-array i) (aref array i)))

return-array))

PPPPPPP:lPPPPP,,,PlPPPPPPPPPPP:l,:PPPPP1PP1P1:P,,,1PPPPPP:,P:

;; ROW-NORMALIZE-ARRAY:
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It normalizes the rows of array in LPC Spectrum.

(defuxn row-normalize-array (array)
(let* ((height (array-dimension-n I array))

* (width (array-dimension-n 2 array))
(total-energy 0)
(result-array (make-array (list height width)

):initial-value 0)))

(dotimes (row height)
* (setq total-energy 0)

(dotimes (column width)
(setq total-enegy (+ total-energy (sqr
(aref array row column)))))

(setq total-energy (sqrt total-energy))
* (dotimes (column width)

(aset (/ (aref array row column) (cond
(( total-energy 0) 1)(t total-energy)))

result-array row column)))
result-array))

;; FREQUENCY-COMPRESS-LFE: ;;;

" ;It compresses the frequency components computed
;;; in LPC Spectrum from 256 to 16.

* (defun frequency-compress-lfe (array)
(let* ((length (array-dimension-n 1 array))

(return-array (make-array (list length 16))))

(do ((count 0 (1+ count)))
((= count length))

* (aset (row-average array count 0 10) return-array count 0)

(aset (row-average array count 11 21) return-array count 1)
(aset (row-average array count 22 32) return-array count 2)
(aset (row-average array count 33 43) return-array count 3)
(aset (row-average array count 44 54) return-array count 4)

* (aset (row-average array count 55 65) return-array count 5)
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(&set (row-average array count 66 76) return-array count 6)

(aset (row-average array count 77 87) return-array count 7)

(aset (row-average array count 88 98) return-array count 8)
(aset (row-average array count 99 109) return-array count 9)
(aset (row-average array count 110 120) return-array count 10)
(aset (row-average array count 121 131) return-array count 11)
(aset (row-average array count 132 162) return-array count 12)

(aset (row-average array count 163 193) return-array count 13)
(aset (row-average array count 194 224) return-array count 14)
(aset (row-average array count 225 255) return-array count 15))

return-array))

;;; REGIONIZE:

This function takes an input Formants and assigns a
;;; region, for each point of time, based on the first and
;;; second formants. Each region represents a specific

vowel sound.

(defun xor (alist)
(let ((count 0))

(loop for thing in alist do
(cond (thing

* (setq count (1+ count)))))
(oddp count)))

(defun intersect (segl seg2)

(let* ((xll (nth 0 segl))

* (yll (nth 1 segl))
(x12 (nth 2 segl))

(y12 (nth 3 segl))
(x21 (nth 0 seg2))
(y21 (nth 1 seg2))

* (x22 (nth 2 seg2))
(y22 (nth 3 seg2))
(ml (/ (float (- y12 y1l)) (- x12 xII)))
(m2 (II (float (- y22 y21)) (- x22 x21)))

(x (// (+ y22 (* ml x12) (- 0 y12 (* m2 x22))) (- ml m2)))
(tI (/ (- x x1l) (- x12 xll)))
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(t2 (/ (- x x21) (- x22 x21)))
* (result (cond ((and (< tl 1.0)

(>= ti 0.0)

(<= t2 1.0)
(>= t2 0.0))

T)
*• (T nil))))

result))

(defun regionize (formants)

(let* ((fi 0)

* (f2 0)
(result (make-array (array-dimension-n 1 formants)

:type 'art-8b)))

(loop for time fixnum from 0 below (array-dimension-n 1

formants) do

* (setq fl (aref formants time 1))

(setq f2 (aref formants time 2))

;(terpri) (princ fl) (princ ",") (princ f2) (princ "-")

(cond ((xor (list (intersect (list fl f2 1500 f2)
'(0 1750 250 3500))

* (intersect (list fl f2 1500 f2)

'(250 1750 450 3500))))

;(princ 1)
(aset 1 result time))

;(aset 300 formants 1 time)

' ;(aset 2750 formants 2 time))

((xor (list (intersect (list fl f2 1500 f2)

'(250 1750 450 3500))
(intersect (list fl f2 1500 f2)

'(450 1750 700 3500))))

* ;(princ 2)
(aset 2 result time))

;(aset 420 formants 1 time)

;(aset 2300 formants 2 time))

((xor (list (intersect (list fl f2 1500 f2)

* '(450 1750 700 3500))

(intersect (list fl f2 1500 f2)

'(900 2500 901 3500))
(intersect (list fl f2 1500 f2)

'(600 1750 900 2500))))

* ;(princ 3)
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(aset 3 result time))

* ;(aset 600 formants 1 time)

;(aset 2200 formants 2 time))
((xor (list (intersect (list fl f2 1500 f2)

'(600 1500 601 1750))

(intersect (list fl f2 1500 f2)
* '(600 1750 900 2500))

(intersect (list fl f2 1500 f2)
'(750 1500 1200 2500))))

;(princ 4)
(aset 4 result time))

* ;(aset 700 formants 1 time)
;(aset 1800 formants 2 time))

((xor (list (intersect (list fl f2 1500 f2)

'(750 1500 1200 2500))

(intersect (list fl f2 1500 f2)
* '(600 1100 601 1500))

(intersect (list fl f2 1500 f2)

'(650 1100 1200 1750))

(intersect (list fl f2 1500 f2)
'(1200 1750 1201 2500))))

* ;(princ 5)

(aset 5 result time))
;(aset 800 formants 1 time)
;(aset 1500 formants 2 time))

((xor (list (intersect (list fl f2 1500 f2)
'(650 950 651 1100))

(intersect (list fl f2 1500 f2)

'(650 1100 1200 1750))
(intersect (list fl f2 1500 f2)

'(800 950 1200 1100))

* (intersect (list fl f2 1500 f2)

'(1200 1100 1201 1750))))

;(princ 6)

(aset 6 result time))
;(aset 900 formants 1 time)

* ;(aset 1100 formants 2 time))

((xor (list (intersect (list fl f2 1500 f2)
'(350 1300 351 1750))

(intersect (list fl f2 1500 f2)
'(600 1300 601 1750))))

* ;(princ 7)
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(aset 7 result time))
* ;(aset 500 formants 1 time)

;(aset 1500 formants 2 time))

((xor (list (intersect (list fl f2 1500 f2)
'(400 950 401 1300))

(intersect (list fl f2 1500 f2)

• '(600 950 601 1300))))

;(princ 8)
(aset 8 result time))
;(aset 500 formants I time)
;(aset 1000 formants 2 time))

* ((xor (list (intersect (list fl f2 1500 f2)
'(200 500 201 1300))

(intersect (list fl f2 1500 f2)

'(400 500 401 1300))))
;(princ 9)

* (aset 9 result time))
;(aset 300 formants 1 time)

;(aset 900 formants 2 time))
((xor (list (intersect (list fl f2 1500 f2)

'(400 500 401 950))
* (intersect (list fl f2 1500 f2)

'(600 950 601 1100))
(intersect (list fl f2 1500 f2)

'(650 950 651 1100))
(intersect (list fl f2 1500 f2)

S'(600 500 800 950))))
;(princ 10)

(aset 10 result time))
;(aset 600 formants I time)
;(aset 800 formants 2 time))

* (t ;(princ 0)

(aset 0 result time))))
;(aset 0 formants 1 time)
;(aset 0 formants 2 time))))

result))

;;; MEDIAN-FILTER:

S;;It smooths out the formant values and eliminates
;;; the glitches when the formant frequency loses a track.

A-17



0

(defun median-filter (array)

(let* ((rows (array-dimension-n 1 array))
(columns (array-dimension-n 2 array))

* (return-array (make-array (list rows columns)))

(window-vector (make-array I)))

(copy-array-contents array return-array)
(do* ((column-index 1 (1+ column-index)))

((= column-index columns))
• (do* ((row-index 5 (1+ row-index)))

((= row-index (- rows 5)))
(do* ((window-index (- row-index 5) (1+ window-index))

((window-vector-index 0 (1+ window-vector-index)))

((= window-vector-index 11))
* (aset (aref array window-index column-index)

window-vector window-vector-index))

(aset (aref (sort window-vector '<) 4)

return-array row-index column-index)))
return-array))

COMPUTE-ATT:

S;; This function computes an utterance using requested
features that contains various attribute values.

* (defun compute-att (pathname att-name)

(let ((return-array))
(terpri)
(princ "Computing ")

(princ att-name)
* (princ "... "1)

(setq return-array (spire:att-val

(send (spire:utterance pathname)
:find-att att-name) nil))

(princ "Done.")

* return-array))
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CREATE-COMPOSITE-DTW-FILE:

This function uses Ready-Template and Ready-Utterance ;;;

;;;, to create a file needed for searching a matched word.

(defun create-composite-dtw-file )
(let* ((write-path (string-append

* "spl:>pkim>dtw>"

(prompt-and-read :string
"Please enter CDTW name
to create: "))))

(setq *cdtw* (compute-composite-dtw))
• (dump-to-disk write-path (list *cdtw* *weight-list*

*tempath* *uttpath*))

(word-search!)))

* (defun compute-composite-dtw ()
(let ((result-list nil))

(princ "Count-Down: ")

(loop for template in *t-set*
for count from (length *t-set*) downto 0 do

* (princ (format nil "-D-" count))
(setq result-list (append result-list

(list (new-ready-dtw-lpc-formants

template *ready-utterance*)))))

(terpri)

* result-list))

LOAD-COMPOSITE-DTW-FILE:

It loads the above file into the buffer. ,;;

* (defun load-composite-dtw-file )
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(load (string-append
* "spl:>pkim>dtw>"

(prompt-and-read :string
"Please enter CDTW name to load: ")))

(setq *cdtw* (car *data*))
(setq *weight-list* (nth 1 *data*))

* (setq *tempath* (nth 2 *data*))
(setq *uttpath* (nth 3 *data*))
(word-search!))

NEW-READY-DTW-LPC-FORMANTS:

This function is to keep track of fricative sounds.
Whenever the frequncy is higher than 1500 Hz, its local

S ;;; distance is multiplied by 0.4.

(defun new-ready-dtw-lpc-formants (template utterance)
• (let* ((dtw (timewarp (car template) (car utterance)))

(m-dimension (array-dimension-n I dtw))
(n-dimension (array-dimension-n 2 dtw))
(return-dtw (make-array (array-dimensions dtw)

:type 'art-16b)))
* (loop for m from 0 below m-dimension do

(loop for n from 0 below n-dimension do
(let ((frfrt (aref (caddr template) m))

(frfru (aref (caddr utterance) n))
(t-region (aref (cadr template) m))

* (u-region (aref (cadr utterance) n))
(distance (* 1000 (car *weight-list*)

(aref dtw & n))))

(cond ((or (> frfrt 1500)
(> frfru 1500)

* (- t-region 0)

(not (- t-region u-region)))

(aset (fix distance) return-dtw m n))
(t (aset (fix (* 0.4 distance)) return-dtw m n))))))

return-dtw))
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;; TIMEWARP:

It receives a pair of arrays, determines their
dimensionality and calls TIMEWARP-1D or TIMEWARP-2d.

(defun timewarp (arrayM arrayN)
(cond (=1 (array-*-dims arrayM)) (timewarp-ld arrayM arrayN))

(=2 (array-#-dims arrayM)) (timewarp-2d arrayM arrayN))))

,, TIMEWARP-1D:

* This function performs Dynamic Time Warp on
one-dimensional arrays.

* (defun timewarp-ld (vectorM vectorN)
(let* ((M (-(array-dimension-n 1 vectorM) 5))

(N C-(array-dimension-n 1 vectorN) W))
(return-array (make-array (list M N)

(dotimes (r-index M)
* (dotimes (n-index N)

(aset (abs (- (aref vectorM rn-index) (aref vectorN n-index)))

return-array in-index n-index)))
return-array))

,, TIMEWARP-2D:

This function performs Dynamic Time Warp on
* ;;; two-dimensional arrays.

(defun timewarp-2d (arrayM arrayN)
* (let* ((M (- (array-dimension-n 1 arrayM) 6))
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(N (- (array-dimension-n I arrayN) 6))
* (length (cond((= (array-dimension-n 2 arrayM) 5) 2)

((= (array-dimension-n 2 arrayM) 16) 16)

((= (array-dimension-n 2 arrayM) 19) 19)

(t
(princ "Timewarp ERROR. Hit Control-Abort")

* (do ((x 0))

((= x ))))))
(start (cond((= (array-dimension-n 2 arrayM) 5) 1)

((= (array-dimension-n 2 arrayM) 16) 0)
((= (array-dimension-n 2 arrayM) 19) 0)))

* (distance 0)

(result-array (make-array (list M N))))

(loop for m-index from 0 below M do

(loop for n-index from 0 below N do
(setq Distance 0.0)

* (loop for v-index from start below (+ start length) do

(setq distance (4 distance (abs (- (aref arrayM

m-index v-index)

(aref arrayN

n-index v-index))))))

(aset distance result-array m-index n-index)))

result-array))

CONNECTED-SCAN:

This function scans the composite Dynamic Time Warp

file and determines the best matched word out of the list. ;;;

* ;;; However, it is primarily designed for connected words.

The algorithm used is the "One-Stage Programming

Algorithm for Connected Word Recognition" by Herman Ney.

(defun scan-dtw (composite-dtw)

(let* ((title (prompt-and-read :string "Title? "))
(thresh (prompt-and-read :number "Threshold? "))

(N (array-dimension-n 2 (car composite-dtw)))

* (D-list (mapcar 'make-array

(mapcar 'array-dimension-n (circular-list 1)
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composite-dtw)))
* (B-list (mapcar 'make-array

(mapcar 'array-dimension-n (circular-list 1)

composite-dtw)))
(from-template (make-array N :type 'art-8b))
(from-frame (make-array N :type 'art-16b))

* (d-min)
(save-b)
(save-d)
(save-temp)
(a 1.0)

* (b 0.5)
(return-list)
(dummy +le-N))

;; STEP 1

(terpri) (princ "Computing Accumulated Distance Array")

(terpri) (princ "Begin Step I ... ")
(loop for current-dtw in composite-dtw

for current-ada in D-list
for current-B in B-list do

(loop for n from 0 below (array-dimension-n I current-dtw)
sum (aref current-dtw n 0) into local-sum

do (aset local-sum current-ada n)
(aset 0 current-B n)))

* (princ "Done.")

;;;STEP 2

(terpri) (princ "Begin Step 2 ...
• (loop for i fixnum from 1 below N do

(setq dummy +le'N)

(loop for current-dtw in composite-dtw

for current-ada in D-list
for current-B in B-list

* for k from 0 to (length composite-dtw) do

(setq d-min (min (aref current-ada 0)
(apply 'min (mapcar 'aref D-list

(mapcar '1- (mapcar
'array-dimension-n
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0

(circular-list 1)

D-list))))))

(cond ((not (= d-min (aref current-ada 0)))
(aset (+ i 1) current-B 0)))

0
(setq save-d (aref current-ada 0))
(setq save-b (aref current-B 0))

(aset (+ (aref current-dtw 0 i) d-min) current-ada 0)
(loop for j fixnum from 1 below (array-dimension-n 1

* current-ada) do
(setq d-min (min (+ (* (1+ a) (aref current-dtw j i))

(aref current-ada j))
(+ (aref current-dtw j i) save-d)
(+ (* b (aref current-dtw (1- j) i))

* (aref current-ada (I- j)))))

(setq save-temp (aref current-B j))
(cond ((= d-min (+ (aref current-dtw j i) save-d))

(aset save-b current-B j))
(( d-min (+ (* b (aref current-dtw (I- j) i))

* (aref current-ada (1- j))))
(aset (aref current-B (I- j)) current-B j)))

(setq save-d (aref current-ada j))
(setq save-b save-temp)
(aset d-min current-ada j))

(cond ((< (aref current-ada (- (array-dimension-n 1

current-ada))) dummy)
(setq dummy (aref current-ada (1- (array

-dimension-n 1 current-ada))))

(aset k from-template i)

(aset (aref current-B (I- (array-dimension-n 1

current-B)))
from-frame i)))))

* (princ "Done.")

;;;STEP 3

(terpri) (princ "Begin Step 3 ...")
* (setq return-list
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(do* ((word-end (I- N) pred)
* (word (aref from-template (1- N)) (aref

from-template pred))
(pred (aref from-frame (I- N)) (aref

from-frame pred))
(answer (list word) (append (list word) answer))

* (boundry-list (list (list word pred word-end))
(append (list (list word pred
word-end)) boundry-list)))

((< pred 1) boundry-list)))
(my-plot-dtws composite-dtw

* (* thresh (length *weight-list*))
return-list
*tempath*
*uttpath*

title)))

(defun my-plot-dtws (cdtw threshold search-list tempath

uttpath title)

(loop for window in *window-list*
* for array-list in (split-into-five cdtw)

for vocabulary in (split-into-five *vocabulary*)
for vo-list in (split-into-five *vo-list*)
do (my-plot-composite-dtw window array-list threshold

vocabulary vo-list search-list
* tempath uttpath title)

(cl:sleep 10)))

* ;;; Isolated-Scan:

It scans composite dtw file after telling the

computer that the testing utterance is a single word.

(defun scan-dtw-isolated (composite-dtw)
(let* ((title (prompt-and-read :string "Title? "))

(thresh (prompt-and-read :number "Threshold? 3))

* (N (array-dimension-n 2 (car composite-dtw)))
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(M-list (mapcar 'array-dimension-n (circular-list 1)
* composite-dtw))

(distance-array (make-array (list (apply 'max M-list) N)))
(min-score cl:most-positive-fixnum)
(new-score)
(best-match))

(loop for dtw in composite-dtw
for I from 0 to (length M-list) do
(fill-distance-array distance-array dtw)
(setq new-score (find-score distance-array dtw))

• (if (< new-score min-score)
(progn (setf min-score new-score)

(setf best-match I))))
(my-plot-dtws composite-dtw

(* thresh (length *weight-list*))
• (list (list best-match 0 N))

*tempath*
*uttpath*

title)))

* (defun fill-distance-array (distance-array dtw)
(let ((M (array-dimension-n 1 dtw))

(N (array-dimension-n 2 dtw))
(a -.25)
(b .75))

* (dotimes (i M)
(dotimes (j N)

(setf (aref distance-array i j) (aref dtw i j))))
(dotimes (i M)

(dotimes (j N)
* (cond ((not (and (zerop i) (zerop j)))

(let ((local-dist (aref distance-array i j)))

(setf (aref distance-array i j)
(min (+ (* (1+ a) local-dist)

(min (if (zerop i)
* cl:most-positive-fixnum

(aref distance-array (I- i) j))))
(+ (* b local-dist)

(min (if (zerop j)
cl:most-positive-fixnum

• (aref distance-array i (I- j)))))
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(+ local-dist

(min (if (or (zerop i)(zerop j))
cl:most-positive-fixnum
(aref distance-array (1- i)
(1- j)))) )) )) ))

* (defun find-score (distance-array dtw )
(let ((M (1- (array-dimension-n I dtw)))

(N (1- (array-dimension-n 2 dtw))))

(II (aref distance-array M N) (path-length distance-array dtw))))

;; SEARCH-DISTANCE-ARRAY:

It is a program for the weight scheme which eliminates ;;;
;;; the tendancy of selecting the shortest template word.

(defun path-length (distance-array dtw)

* (let ((M (1- (array-dimension-n I dtw)))
(N (I- (array-dimension-n 2 dtw))))

(do ((i 0) (j 0)
(coordinate-count 1)

(point-alist nil nil)
* (next-point))

((and (= i M) (= j N)) coordinate-count)
(if (< i M) ;left

(setf point-alist
(cons (list (aref distance-array (1+ i) j)

* (list (1+ i) j)) point-alist)))

(if (< j N) ;up
(setf point-alist

(cons (list (aref distance-array i (1+ j))
* (list i (1+ j))) point-alist)))

(if (and (< i M) (< j N)) ;diagonally
(setf point-alist

(cons (list (aref distance-array (1+ i) (1+ j))
* (list (1+ i) (1+ j))) point-alist)))
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(setf next-point (find-closest-point point-alist))
* (setf i (car next-point))

(setf j (cadr next-point))

(incf coordinate-count))))

(defun find-closest-point (point-alist)
* (do* ((plist point-alist (cdr plist))

(point (car plist) (car plist))

(min-dist cl:most-positive-fixnum)
(min-coordinates nil))

((null plist) min-coordinates)
* (if (< (car point) min-dist) (progn (setf min-dist (car point))

(setf min-coordinates

(cadr point))))))

PLOT-COMPOSITE-DTW:

It displays speech waveforms, dtw, and recognized word. ;;;

(defun my-plot-composite-dtw (window array-list threshold vocabulary

vo-list &OPTIONAL search-list tempath
uttpath title)

(let* ((total-M (apply '+ (mapcar 'zl:array-dimension-n
(circular-list 1) array-list)))

(total-N (zl:array-dimension-n 2 (car array-list)))
(xl 400)

• (yl 30)
(y2 (+ yl (min 595 total-M)))
(yrange (- y2 yl))
(x2 (floor (+ xl (* 1 (* total-N (// (float yrange)

total-M))))

* (xrange (- x2 xl)))
(send window :expose)
(send window :clear-window)

(my-drawborder window xl yl x2 y2 )
(send window :draw-string title x2 (- yl 4) 0 (- yl 4) nil

* '(:dutch :bold :normal))

A-28

0



(do* ((a-list array-list (cdr a-list))

* (k 0 (1+ k))
(array (car a-list) (car a-list))
(bottom y2 (- bottom current-yrange))
(v-word (car vocabulary) (cond ((not (null a-list))

(nth k vocabulary))
• (t nil)))

(current-M (zl:array-dimension-n 1 array)

(if a-list (zl:array-dimension-n 1 array) 0))

(current-N (zl:array-dimension-n 2 array)

(if a-list (zl:array-dimension-n 2 array) 0))

* (current-yrange (* yrange (/ (float current-M) total-M))
(* yrange (U/ (float current-M) total-M))))

((null a-list))

(send window :draw-line (- xl 70) (round bottom) (+ 10 x2)

(round bottom))

(my-display-waveform-rot window

(- xl 50) (round (- bottom
current-yrange))

(1- xl) (round bottom)

* (string-append tempath v-word ".utt"))

(send window :draw-string (nth k vocabulary)

(- xl 60)
(+ (round C- bottom (/ current-yrange 2))) 6) 0
(+ (round (- bottom (// current-yrange 2))) 6) nil

* '(:fix :roman :very-large))
(loop for m-index from 0 below current-M do

(loop for n-index from 0 below current-N do
(if (< (aref array m-index n-index) threshold)

(send window :draw-point
* (round (+ xl (* n-index (/ (float xrange)

current-N))))
(round (- bottom (* m-index (I/ current-yrange

current-M)))))))))

* (loop for n-index from 0 to total-N by 10 do

(send window :draw-line
(round (+ xI (* n-index (/ (float xrange) total-N))))

(- y2 4)
(round (+ xl (* n-index (/ (float xrange) total-N))))

* ( 5 y2)))
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(loop for m-index from 0 to total-M by 10 do
* (send window :draw-line

(- x1 5)
(round (- y2 (* m-index (/ (float yrange) total-M))))
(+ xl 5)

(round (- y2 (* m-index (/ (float yrange) total-M))))))
* (if search-list

(loop for word in search-list do

(send window :draw-line
(round (+ xl (* (nth 1 word) (// (float xrange)

total-N))))

* yl
(round (+ xl (* (nth I word) (II (float xrange)

total-N))))
(+ y2 70))

(send window :draw-string (nth (car word) *vocabulary*)
* (- (round (+ xl

(* (// (+ (nth I word) (nth 2 word)) 2)

(/ (float xrange) total-N)))) 10)
(+ 65 y2)

(- (round (+ xl

* (* (// (+ (nth I word) (nth 2 word)) 2)
(U/ (float xrange) total-N)))) 10)

(+ 65 y2 )

nil

'(:fix :roman :very-large))

* (send window :draw-line

x2 y2 x2 (+ y2 70))))

(if uttpath (my-display-waveform window xl (1+ y2) x2 (+ y2 50)

uttpath))))

DRAWBORDER:

It draws a border on each of five splited windows.

(defun my-drawborder ( window xl yl x2 y2)

(send window :draw-line xl yl x2 yl)

* (send window :draw-line xl yl xI y2)
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(send window :draw-line x1 y2 x2 y2)
(send window :draw-line x2 y2 x2 y)

(defun split-into-five (1)

(do* ((start 0 (+ start 14))

(end 14 (+ end 14))

* (rlist (list (cl:subseq 1 start end))

(cons (subseq 1 start end) rlist)))

((= end 70) (reverse rlist))))

(defun my-display-waveform-rot (window xl yl x2 y2 pathname)

* (let* ((utt (send (spire:utterance pathname) :find-att
"original waveform"))

(display-array (spire:att-val utt utt))

(length (zl:array-length display-array))

(width (- x2 xl))
• (height (- y2 yl)))

(declare (sys:array-register display-array))

(my-drawborder window xl yl x2 y2)

(loop for indexi fixnum from 0 to (- length 2)

for index2 fixnum from 1 to (1- length) do

* (send window :draw-line

(+ xl (floor (* (+ (aref display-array indexl) 32767.0)

(// width 65535.0))))
(- y2 (floor (* indexl U/ height (float length)))))
(+ xl (floor (* (+ (aref display-array index2) 32767.0)

* (// width 65535.0))))

(- y2 (floor (* index2 (/ height (float length)))))))))

(defun my-display-waveform (window xl yl x2 y2 pathname)

(let* ((utt (send (spire:utterance pathname) :find-att
* "original waveform"))

(display-array (spire:att-val utt utt))

(length (zl:array-length display-array))

(width (- x2 xl))

* (height (- y2 yl)))

(declare (sys:array-register display-array))

(my-drawborder window xl yl x2 y2)

(loop for indexl fixnum from 0 to (- length 2)
for index2 fixnum from I to (I- length) do

* (send window :draw-line
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(+ xl (floor (* indexi (U/ width (float length)))))
* (+ yl (floor (* (+ (aref display-array indexl) 32767.0)

(/I height 65535.0))))

(+ xl (floor (* index2 (/ width (float length)))))
(+ yi (floor (* (+ (aref display-array index2) 32767.0)

(/ height 65535.0))))))))

Merged Template:

0 ;; This is newly designed algorithm which combines the
vocabulary of several speakers to produce one optimal

template that is useful for multiple speakers.

(setf *speakers* '(':>pkim>utterances>kab>"
":>pkim>utterances>deb>"
":>pkim>utterances>bar>"
":>pkim>utterances>dave>"

* ":>pkim>utterances>kris>"))

(defun create-merged-template-set ()
(mapcar '(lambda (utt)

(let* ((set (merge-composite-templates
* (create-composite-templates

*speakers* utt)))

(temps (car set))

(path (cadr set)))
* (copyf (fs:merge-pathnames path (string-append

Utt ",.utt"))

(fs :merge-pathnames ':>pkim>utterances>ave>"

(string-append utt ".utt"))

:characters nil

:byte-size 16.)

(loop for speaker in *speakers* do

(send (spi:utterance (fs:merge-pathnames speaker
* (string-append utt ".utt")))
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:kill))
* temps))

*vocabulary*))

333:33::3:33333:33393:3333333333:3333:33:33:333:3:3333333333333333333

;;; SELECT-CLOSEST-TO-AVERGE-LENGTH:

;;, This function averges a number of different

;; utterances and selects one which is closest to that

;; averged utterance as a reference utterance.

(defun select-closest-to-averge-legnth (template-list)

(let ((ave-length (/ (apply '+

* (mapcar 'array-dimension-n

(circular-list 1)

template-list))

(length template-list)))

(best cl:most-positive-fixnum)

diff

p)
(loop for template in template-list

for template-no from 0 below (length template-list) do
(setq diff (abs (- ave-length (array-dimension-n 1

* template))))
(if (< diff best)

(progn (setq best diff)
(setq P template-no))))

p))

;;; FIND-INDEX-TO-NEAREST-VECTOR:

0 This function looks at a specified number of time
;; slices and finds one that is closest to the index of

;;; a feature of the reference utterance. This is repeated

;;; for the other features that have been applied.
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* (defun find-index-to-nearest-vector (X P p-index)
(let* ((C 3)

(p-slices (array-dimension-n 1 P))

(x-slices (array-dimension-n I X)
(radius (max 1 (floor U/ (* C x-slices) p-slices))))

* (center (floor U/I (* p-index x-slices) p-slices))

(min-dist ci :most-positive-fixnua)
di st
index)

(loop for x-index from (max 0 C- center radius))
* below (min x-slices (+ center radius)) do

(setq dist (find-distance-between P p-index X x-index))
(if (< dist min-dist)

(progn (setq min-dist dist)
(setq index x-index))))

* index))

(defun find-distance-between (P p-index X x-index)
(let ((cols (array-dimension-n 2 P))

(dist 0))

* (loop for col from 0 below cols do
(setq dist (+ dist (abs C- Caref P p-index col)

(aref X x-index col))))
dist))

MERGE-COMPOSITE-TEMPLATES:

This function obtains a number of arrays found by
the above step, averges them, and combine them as one
template set.

* (defun merge-composite-templates (composite-template-list)

(let* CCLPC-list (mapcar 'car composite-template-list))
(FRM-list Cmapcar 'cadr composite-template-list))
(FFR-list Cmapcar 'caddr composite-template-list))
(template-count (length composite-template-list))

* (P-nth (select-closest-to-average-length LPC-list))
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(P-LPC (nth P-nth LPC-list))
* (P-path (nth P-nth *speakers*))

(Q-slices (array-dimension-n 1 P-LPC))
(Q-LPC (cl:make-array '(,Q-slices 16) :initial-element 0))
(Q-FRM (cl:make-array '(,Q-slices 5) :initial-element 0))
(Q-FFR (cl:make-array Q-slices :initial-element 0))

* (indices nil))
(declare (special P-LPC))
(loop for q-index from 0 below Q-slices do

(setq indices (mapcar '(lambda (x index)
(find-index-to-nearest-vector

0 x P-LPC index))

LPC-list (circular-list q-index)))
(loop for LPC in LPC-list

for index in indices do
* (loop for col from 0 below 16 do

(incf (aref Q-LPC q-index col)
U/I (aref LPC index col)

template-count))))

* (loop for FRM in FRM-1ist
for index in indices do

(loop for col from 0 below 5 do
(incf (aref Q-FRM q-index col)

U/I (aref FRM index col)
* template-count))))

(loop for FFR in FFR-list

for index in indices do
(incf (aref Q-FFR q-index)

* (U/ (aref FFR index) template-count))))
(list (list Q-LPC (regionize Q-FRM) Q-FFR) P-path))

0 ;;; CREATE-COMPOSITE-TEMPLATES:

This function performs additional processing required ;;
;; to eliminate errors and simplified computations and
;; produce the final optimal template.
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(defun create-composite-templates (speakers utterance)
(mapcar '(lambda (speaker utt)

(let ((pathname (fs:merge-pathnames speaker
(str- j-append utt ".utt")

(list (row-normalize-array
(frequency-compress-if e

(compute-att pathnane "LPC Spectrum"))
(median-filter

* (compute-att pathname "Formants"))
(make-array-from-fps-st ructure
(compute-att pathname

"Frication Frequency"))

* speakers (circular-list utterance)))
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